123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429 |
- import sys
- import numpy as np
- import torch
- from tqdm import tqdm
- from torch.utils.data import DataLoader, RandomSampler
- from transformers import BertTokenizer, AdamW, get_linear_schedule_with_warmup
- # from torch.nn import DataParallel
- import matplotlib.pyplot as plt
- from PointerNet.model import UIEModel
- from PointerNet.config import NerArgs
- from PointerNet.data_loader import NerDataset, NerCollate, load_and_split_dataset, get_paper_for_predict
- from PointerNet.utils.decode import ner_decode, topic_ner_decode
- from PointerNet.utils.metrics import calculate_metric, classification_report, get_p_r_f
- from pprint import pprint
- from PointerNet import config
- logger = config.myLog(__name__, log_cate="train_log").getlog()
- sigmoid = torch.nn.Sigmoid()
- class NerPipeline:
- def __init__(self, model, args):
- self.model = model
- self.args = args
- if "train_path" in dir(self.args):
- self.train_data, self.valid_data, self.test_data = load_and_split_dataset(self.args.train_path,
- train_ratio=0.995, valid_ratio=0.003)
- def save_model(self):
- torch.save(self.model.state_dict(), self.args.save_dir)
- torch.save(self.optimizer.state_dict(), self.args.optimizer_save_dir)
- def load_model(self):
- self.model.load_state_dict(torch.load(self.args.save_dir, map_location="cpu")) #GPU 上训练的模型加载到CPU
- # self.model.load_state_dict(torch.load(self.args.save_dir))
- self.model.to(self.args.device) # 耗内存
- def build_optimizer_and_scheduler(self, t_total):
- module = (
- self.model.module if hasattr(self.model, "module") else self.model
- )
- # 差分学习率
- no_decay = ["bias", "LayerNorm.weight"]
- model_param = list(module.named_parameters())
- bert_param_optimizer = []
- other_param_optimizer = []
- for name, para in model_param:
- space = name.split('.')
- # print(name)
- if "bert" in space[0]:
- bert_param_optimizer.append((name, para))
- else:
- other_param_optimizer.append((name, para))
- optimizer_grouped_parameters = [
- # bert other module
- {"params": [p for n, p in bert_param_optimizer if not any(nd in n for nd in no_decay)],
- "weight_decay": self.args.weight_decay, 'lr': self.args.lr},
- {"params": [p for n, p in bert_param_optimizer if any(nd in n for nd in no_decay)],
- "weight_decay": 0.0, 'lr': self.args.lr},
- # 其他模块,差分学习率
- {"params": [p for n, p in other_param_optimizer if not any(nd in n for nd in no_decay)],
- "weight_decay": self.args.weight_decay, 'lr': self.args.other_lr},
- {"params": [p for n, p in other_param_optimizer if any(nd in n for nd in no_decay)],
- "weight_decay": 0.0, 'lr': self.args.other_lr},
- ]
- optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.lr, eps=self.args.adam_epsilon)
- scheduler = get_linear_schedule_with_warmup(
- optimizer, num_warmup_steps=int(self.args.warmup_proportion * t_total), num_training_steps=t_total
- )
- return optimizer, scheduler
- def eval_forward(self, data_loader):
- s_logits, e_logits = [], []
- self.model.eval()
- for eval_step, batch_data in enumerate(data_loader):
- # for key in batch_data.keys():
- # batch_data[key] = batch_data[key].to(self.args.device)
- output = model(batch_data['input_ids'],
- batch_data['attention_mask'],
- )
-
- start_logits = output["ner_output"]["ner_start_logits"]
- end_logits = output["ner_output"]["ner_end_logits"]
- for i in range(len(start_logits)):
- s_logits.append([start_logits[i]])
- e_logits.append([end_logits[i]])
- return s_logits, e_logits
-
- def half_batch_eval_forward(self, data_loader):
- """
- 本项目batch_size=1,一个批次为一个文档样本,包含句子太多时,需要截断再分批前向计算
- 不过此时无须反馈学习,耗显存不会很大,一次性计算的句子可以更多
- """
- s_logits, e_logits, con_logits = [], [], []
- self.model.eval()
- for eval_step, batch_data in enumerate(data_loader):
- max_input_len = self.args.max_input_sent_num
- # 本项目中由于显存限制,batch_size=1,则batch_n=0
- one_data_s_logit, one_data_e_logit, one_data_con_logit = [], [], []
- for batch_n in range(len(batch_data['ner_end_labels'])):
- batch_num = int(len(batch_data['input_ids'][batch_n]) / max_input_len)
- if batch_num > 0:
- for i in range(batch_num):
- left, right = i*max_input_len, (i+1)*max_input_len
- if i == batch_num-1 and len(batch_data['input_ids'][batch_n]) - (i+1)*max_input_len<3:
- batch_num -= 1
- break
- output = self.model(batch_data['input_ids'][batch_n][left:right].to(self.args.device),
- batch_data['attention_mask'][batch_n][left:right].to(self.args.device))
- start_logits = output["ner_output"]["ner_start_logits"]
- end_logits = output["ner_output"]["ner_end_logits"]
- content_logits = output["ner_output"]["ner_content_logits"]
- one_data_s_logit.extend(start_logits)
- one_data_e_logit.extend(end_logits)
- one_data_con_logit.extend(content_logits)
- if len(batch_data['input_ids'][batch_n]) - batch_num * max_input_len > 0:
- left = batch_num*max_input_len
- output = self.model(batch_data['input_ids'][batch_n][left:].to(self.args.device),
- batch_data['attention_mask'][batch_n][left:].to(self.args.device))
- start_logits = output["ner_output"]["ner_start_logits"]
- end_logits = output["ner_output"]["ner_end_logits"]
- content_logits = output["ner_output"]["ner_content_logits"]
- one_data_s_logit.extend(start_logits)
- one_data_e_logit.extend(end_logits)
- one_data_con_logit.extend(content_logits)
- one_data_s_logit = torch.cat(one_data_s_logit)
- one_data_e_logit = torch.cat(one_data_e_logit)
- one_data_con_logit = torch.cat(one_data_con_logit)
- s_logits.append(one_data_s_logit)
- e_logits.append(one_data_e_logit)
- con_logits.append(one_data_con_logit)
- return s_logits, e_logits, con_logits
- def get_metric(self, s_logits, e_logits, con_logits, callback):
- # batch_size = len(callback)
- total_count = [0 for _ in range(len(self.args.id2label))]
- role_metric = np.zeros([len(self.args.id2label), 3])
- for s_logit, e_logit, con_logit, tmp_callback in zip(s_logits, e_logits, con_logits, callback):
- text_list, gt_entities = tmp_callback
- pred_entities = topic_ner_decode(sigmoid(s_logit), sigmoid(e_logit), sigmoid(con_logit),
- text_list, self.args.id2label)
- # print("真实起始位置及试题长度:", [i[1] for i in gt_entities['TOPIC']], [len(i[0]) for i in gt_entities['TOPIC']])
- # print("预测起始位置及试题长度:", [i[1] for i in pred_entities['TOPIC']], [len(i[0]) for i in pred_entities['TOPIC']])
- # print("=========预测===============")
- # print(pred_entities)
- # print("==========实际==============")
- # print(gt_entities)
-
- for idx, _type in enumerate(self.args.labels): # 只有一个label
- if _type not in pred_entities:
- pred_entities[_type] = []
- total_count[idx] += len(gt_entities[_type])
- role_metric[idx] += calculate_metric(pred_entities[_type], gt_entities[_type])
-
- return role_metric, total_count
- def half_batch_train(self, batch_data, epoch, global_step, t_total):
- """
- 本项目batch_size=1,一个批次为一个文档样本,包含句子太多时,需要截断再分批训练
- batch_data: 批次数据,list
- """
- y_loss = []
- max_input_len = self.args.max_input_sent_num
- for batch_n in range(len(batch_data['ner_end_labels'])): # 本项目中由于显存限制,batch_size=1
- batch_num = int(len(batch_data['input_ids'][batch_n]) / max_input_len)
- print("batch_num:::", batch_num, batch_n, len(batch_data['input_ids'][batch_n]))
- global_step += 1
- if batch_num > 0:
- for i in range(batch_num):
- left, right = i*max_input_len, (i+1)*max_input_len
- if i == batch_num-1 and len(batch_data['input_ids'][batch_n]) - (i+1)*max_input_len<3:
- batch_num -= 1
- break
- output = self.model(batch_data['input_ids'][batch_n][left:right].to(self.args.device),
- batch_data['attention_mask'][batch_n][left:right].to(self.args.device),
- batch_data['ner_start_labels'][batch_n][left:right].to(self.args.device),
- batch_data['ner_end_labels'][batch_n][left:right].to(self.args.device),
- batch_data['ner_content_labels'][batch_n][left:right].to(self.args.device),
- )
- loss = output["ner_output"]["ner_loss"]
- y_loss.append(loss.item())
- torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
- loss.backward() # 耗显存
- self.optimizer.step()
- self.scheduler.step()
- self.model.zero_grad()
- # global_step += 1
- print('【train】 Epoch: %d/%d Step: %d/%d loss: %.5f' % (
- epoch, self.args.train_epoch, global_step, t_total, loss.item()))
- if len(batch_data['input_ids']) - batch_num * max_input_len > 0:
- left = batch_num*max_input_len
- output = self.model(batch_data['input_ids'][batch_n][left:].to(self.args.device),
- batch_data['attention_mask'][batch_n][left:].to(self.args.device),
- batch_data['ner_start_labels'][batch_n][left:].to(self.args.device),
- batch_data['ner_end_labels'][batch_n][left:].to(self.args.device),
- batch_data['ner_content_labels'][batch_n][left:].to(self.args.device),
- )
- loss = output["ner_output"]["ner_loss"]
- y_loss.append(loss.item())
- torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
- loss.backward() # 耗显存
- self.optimizer.step()
- self.scheduler.step()
- self.model.zero_grad()
- # global_step += 1
- print('【train】 Epoch: %d/%d Step: %d/%d loss: %.5f' % (
- epoch, self.args.train_epoch, global_step, t_total, loss.item()))
- return global_step, sum(y_loss) / len(y_loss)
- def train(self, dev=True):
- train_dataset, train_callback = NerDataset(data=self.train_data,
- tokenizer=self.args.tokenizer,
- max_len=self.args.max_seq_len,
- label_list=self.args.labels)
- print(111111111111111111111111111111)
- collate = NerCollate(max_len=self.args.max_seq_len, label2id=self.args.label2id)
- print(222222222222222222222222222222)
- train_sampler = RandomSampler(train_dataset)
- train_loader = DataLoader(dataset=train_dataset,
- batch_size=self.args.train_batch_size,
- sampler=train_sampler,
- num_workers=10, # 多进程加载数据
- collate_fn=collate.collate_fn)
- dev_loader = None
- dev_callback = None
- if dev:
- dev_dataset, dev_callback = NerDataset(data=self.valid_data,
- tokenizer=self.args.tokenizer,
- max_len=self.args.max_seq_len,
- label_list=self.args.labels)
- dev_loader = DataLoader(dataset=dev_dataset,
- batch_size=self.args.eval_batch_size,
- shuffle=False,
- num_workers=10,
- collate_fn=collate.collate_fn)
- t_total = len(train_loader) * self.args.train_epoch
- self.optimizer, self.scheduler = self.build_optimizer_and_scheduler(t_total)
- global_step = 0
- self.model.zero_grad()
- self.model.to(self.args.device)
- # if torch.cuda.device_count() > 1: # 多GPU训练时,要求数据在送入model()前也要加载到gpu中
- # self.model = DataParallel(self.model, device_ids=[0,1])
- eval_step = self.args.eval_step
- best_f1 = 0.
- y_loss = []
- for epoch in range(1, self.args.train_epoch + 1):
- y_loss_bt = [] # 训练过程每一轮的所有loss
- for batch_data in tqdm(train_loader):
- self.model.train()
- # for key in batch_data.keys():
- # print(batch_data[key])
- # batch_data[key] = batch_data[key].to(self.args.device)
- global_step, mean_loss = self.half_batch_train(batch_data, epoch, global_step, t_total)
- y_loss_bt.append(mean_loss)
- if dev and global_step % eval_step == 0:
- # s_logits, e_logits = self.eval_forward(dev_loader)
- s_logits, e_logits, con_logits = self.half_batch_eval_forward(dev_loader)
- role_metric, _ = self.get_metric(s_logits, e_logits, con_logits, dev_callback)
- mirco_metrics = np.sum(role_metric, axis=0)
- mirco_metrics = get_p_r_f(mirco_metrics[0], mirco_metrics[1], mirco_metrics[2])
- print('【eval】 precision={:.4f} recall={:.4f} f1_score={:.4f}'.format(mirco_metrics[0],
- mirco_metrics[1],
- mirco_metrics[2]))
- logger.info('【eval】 precision={:.4f} recall={:.4f} f1_score={:.4f}'.format(mirco_metrics[0],
- mirco_metrics[1],
- mirco_metrics[2]))
- y_loss.append(sum(y_loss_bt) / len(y_loss_bt))
- y_loss_bt = []
- if mirco_metrics[2] > best_f1:
- best_f1 = mirco_metrics[2]
- print("best_f1:{}".format(mirco_metrics[2]))
- logger.info("best_f1:{}".format(mirco_metrics[2]))
- self.save_model()
- # 训练完每一轮画图,训练完一轮就很费时间
- x = [i for i in range(len(y_loss))]
- plt.figure()
- plt.plot(x, y_loss)
- plt.savefig(f'loss_curve_{epoch}_epoch.png') # 保存图片
- plt.show()
- def test(self):
- test_dataset, test_callback = NerDataset(data=self.test_data,
- tokenizer=self.args.tokenizer,
- max_len=self.args.max_seq_len,
- label_list=self.args.labels)
- collate = NerCollate(max_len=self.args.max_seq_len, label2id=self.args.label2id)
- test_loader = DataLoader(dataset=test_dataset,
- batch_size=self.args.eval_batch_size,
- shuffle=False,
- num_workers=2,
- collate_fn=collate.collate_fn)
- self.load_model()
- self.model.to(self.args.device)
- with torch.no_grad():
- # s_logits, e_logits = self.eval_forward(test_loader)
- s_logits, e_logits, con_logits = self.half_batch_eval_forward(test_loader)
- role_metric, total_count = self.get_metric(s_logits, e_logits, con_logits, test_callback)
- mirco_metrics = np.sum(role_metric, axis=0)
- mirco_metrics = get_p_r_f(mirco_metrics[0], mirco_metrics[1], mirco_metrics[2])
- print(
- '[eval] precision={:.4f} recall={:.4f} f1_score={:.4f}'.format(mirco_metrics[0], mirco_metrics[1],
- mirco_metrics[2]))
- print(classification_report(role_metric, self.args.labels, self.args.id2label, total_count))
- def predict(self, sentences_list):
- with torch.no_grad(): # 不需要梯度计算的操作
- inputs = self.args.tokenizer(sentences_list, padding='max_length', truncation=True,
- max_length=self.args.max_seq_len, return_tensors='pt')
- token_ids = inputs['input_ids'].to(self.args.device)
- attention_mask = inputs['attention_mask'].to(self.args.device)
-
- # tokens = ['[CLS]'] + tokens + ['[SEP]']
- # token_ids = torch.from_numpy(np.array(encode_dict['input_ids'])).unsqueeze(0).to(self.args.device)
- # attention_mask = torch.from_numpy(np.array(encode_dict['attention_mask'])).unsqueeze(0).to(
- # self.args.device)
- # token_type_ids = torch.from_numpy(np.array(encode_dict['token_type_ids'])).unsqueeze(0).to(self.args.device)
- output = self.model(token_ids, attention_mask)
- start_logits = output["ner_output"]["ner_start_logits"]
- end_logits = output["ner_output"]["ner_end_logits"]
- content_logits = output["ner_output"]["ner_content_logits"]
- start_logits = sigmoid(start_logits[0])
- end_logits = sigmoid(end_logits[0])
- con_logits = sigmoid(content_logits[0])
- return start_logits, end_logits, con_logits
-
- def half_batch_predict(self, **kwargs):
- """
- 将一份文档截断分批次预测
- """
- # self.load_model()
- # self.model.eval()
- # self.model.to(self.args.device)
- with torch.no_grad():
- print("\n********************************************\n")
- if kwargs:
- sentences = kwargs["text_list"]
- labels = kwargs["labels"] if "labels" in kwargs else []
- else:
- sentences, labels = get_paper_for_predict()
- print(sentences)
- print(labels)
- # 对于单个句子
- # encode_dict = self.args.tokenizer.encode_plus(text=[i for i in text],
- # max_length=self.args.max_seq_len,
- # padding="max_length",
- # truncation="only_first",
- # return_token_type_ids=True,
- # return_attention_mask=True)
- # 需要分固定句子处理,句子不能太长,因为显存不够
- print("预测文档的句子数:", len(sentences))
- max_input_len = 100
- batch_num = int(len(sentences) / max_input_len)
- start_logits, end_logits, con_logits = [], [], []
- if batch_num > 0:
- for i in range(batch_num):
- left, right = i*max_input_len, (i+1)*max_input_len
- if i == batch_num-1 and len(sentences) - (i+1)*max_input_len<28:
- batch_num -= 1
- break
- l_edge = 10 if left > 0 else 0
- r_edge = 10 # 左右多加几句共同参与
- start_logit, end_logit, con_logit = self.predict(sentences[left-l_edge: right+r_edge])
- start_logits.append(start_logit[l_edge:-r_edge])
- end_logits.append(end_logit[l_edge:-r_edge])
- con_logits.append(con_logit[l_edge:-r_edge])
- if len(sentences) - batch_num * max_input_len > 0:
- left = batch_num*max_input_len
- l_edge = 10 if left > 0 else 0
- start_logit, end_logit, con_logit = self.predict(sentences[left-l_edge:])
- start_logits.append(start_logit[l_edge:])
- end_logits.append(end_logit[l_edge:])
- con_logits.append(con_logit[l_edge:])
- start_logits = torch.cat(start_logits, dim=0)
- end_logits = torch.cat(end_logits, dim=0)
- con_logits = torch.cat(con_logits, dim=0)
- # 不分段预测
- # start_logits, end_logits, con_logits = self.predict(sentences)
- pred_entities, topic_item_pred = topic_ner_decode(start_logits, end_logits, con_logits, sentences, self.args.id2label)
- # pprint(dict(pred_entities))
- split_topic_idx = []
- for i in pred_entities['TOPIC']:
- split_topic_idx.append((i[-1], i[-1]+len(i[0])))
- print("split_topic_idx:",split_topic_idx)
- return dict(pred_entities), split_topic_idx, topic_item_pred
- if __name__ == '__main__':
-
- args = NerArgs()
- model = UIEModel(args)
-
- ner_pipeline = NerPipeline(model, args)
- ner_pipeline.train(dev=True)
- # # 批量测试
- ner_pipeline.test()
- # 单个测试
- # txts = [
- # '七、解答(本题共8小题,每小题4分,共32分,在给出的四个选项中,', '每小题中只有一个选项符合题目要求。)', '11、如图所示,在$x>0$的空间中,存在沿$x$轴方向的匀强电场$E$;在$x<0$的空间中,存在沿$x$轴负方向的匀强电场,场强大小也为$E$。一电子$(-e,m)$在$x=d$处的$P$点以沿$y$轴正方向的初速度$v__0$', '开始运动,不计电子重力。求:(1)电子的$x$方向分运动的周期。(2)电子运动的轨迹与$y$轴的各个交点中,任意两个交点的距离。【图片】', '【答案】(1)$4sqrt(((2m*d)/(eE)))$;(2)$2nv__0sqrt(((2m*d)/(eE)))(n=1,2,3…)$。', '如图,一导热性能良好、内壁光滑的汽缸水平放置,横截面积$S=1.010^^-3m^2$、质量$m=2kg$、厚度不计的活', '塞与汽缸底部之', '间封闭了一部分理想气体,此时活塞与汽缸底部之间的距离$l=36cm$,在活塞的右侧距离其$d=14cm$处有一对与汽缸固定连接的卡环。气体的温度$t=27*℃$,外界大气压强$p__0=1.010^5Pa$。现将汽缸开口向上竖直放置($g$取$10m/s^2$)。 (1)求此时活塞与汽缸底部之间的距离$h$; (2)如果将缸内气体加热到$600K$,求此时气体的压强$p$。 【图片】', '【解析】(1)汽缸水平放置时:封闭气体的压强$p__1=p__0=1.010^5Pa$,温度$T__1=300K$,体积$V__1=lS$;汽缸竖直放置时:封闭气体的压强$p__2=p__0+((mg)/S)=1.210^5Pa$,温度$T__2=T__1=300K$,体', '积$V__2=hS$;由玻意耳定律$p__1V__1=p__2V__2$,$h=((p__1V__1)/(p__2S))$,解得$h=0.3m$ (2)温度升高,活塞刚达到卡环,气体做等压变化,此时$p__3=p__2$,$V__2=hS$,$V__3=(l+d)S$,$T__2=300K$,$((V__2)/(T__2))=((V__3)/(T__3))$,$T__3=500K$;汽缸内气体温度继续升高,气体做等容变化$p__3=1.210^5Pa$,$T__3=500K$,$T__4=600K$,$((p__3)/(T__3))=(p/(T__4))$,$p=1.4410^5Pa$ 答案:(1)$0.3m$; (2)$1.4410^5Pa$', '5、中国首艘航空母舰“辽宁”号正式交接入列和歼$-15$舰载战斗机成功起降,对于有效维护国家主权、促进世界和平与共同发展,具有重要意义.据了解,该航母长$304m$,宽$70.5m$,', '满载时吃水深度$11m$;若歼$-15$战斗机的质量为$3.310^4$kg,轮胎与甲板总接触面积$6000cm^2$,战斗机在约为$2.510^5N$推力作用下滑跑$20m$用时$5s$.求:$(g=10N/kg$,$ρ__海水=1.0310^3kg/m^3)$ (1)战斗机停在甲板上对甲板的压强; (2)推力做功的功率; (3)满载时海水对舰底的压强.', '答案:(1)战斗机停在甲板上对甲板', '的压强为$3.310^5N$', '; (2)推力做功的功率为$10^6W$; (3)满载时海水对舰底的压强$1.13310^5Pa$.', '解析:已知:$h=11m$,$m=3.310^4kg$,$S=6000cm^2=0.6m^2$,$F=2.510^5N$,$s=20m$,$t=5s$,$g=10N/kg$,$ρ__海水=1.0310^3kg/m^3$ 求:(1)战', '斗机停在甲板上对甲板的压强$p__1$; (2)推力做功的功率P; (3)满载时海水对舰底的压强$p__2$. 解:(1)战斗机对甲板的压力: $F__1=G=mg=3.310^4kg10N/kg=3.310^5N$, 对甲板的压强: $p__1=F__1S=3.310^5N0.6m^2=5.510^5Pa$; (2)推力做的功: $W=Fs=2.510^5N20m=510^6J$, 推力所做的功率: $P=Wt=510^6J5s=10^6W$; (3)满载时海水对舰底的压强: $p__2=ρ__海水gh=1.0310^3kg/m^310N/kg11m=1.13310^5Pa$. 答:(1)战斗机', '停在甲板上对甲板的压强为$3.310^5N$; (2)推力做功的功率为$10^6W$; (3)满载时海水对舰底的压强$1.13310^5Pa$.', '64、已知地球半径为R,地面的重力加度为g,将地球视为均第匀球体,求: (1)距地面$12R$高度处的力加速度 (2)地球的第一宇宙速度 (3)地球的自转周期为T,', '地球同步卫星离地面物的高度', '[答案](1)距地面$12R$高度处的重力加速度是$49g$ (2)地球的步第一宇宙速度是$sqrt(gR)$ (3)若地球的自转周期为T,地球同', '步卫离地面的高度是$root3*(gR^2T^24pi^2)-R$', '解析:(1)由于地球表面物体知随地球转而做圆运动的向心加速度体很小,地面上物体所受重力近似等于地球的万有引力,对地面上的', "物体有$GMmR^2=mg$,同理,对距地高度$12R$处的物体有$GMm*(RR2)^2=mg'$,解得$g'=49g$ (2)对地卫星环绕地心的匀速圆周运动有$GMmR^2=mv^2R$,解地球宇的第速一宇速度$v=sqrt(gR)$ $GMm*(Rh)^2=m*(Rh)*(2*πT)^2$,$GMmR^2=mg$,解得$h=root3*(gR^2T^24pi^2)-R$", '25、重力的方向总是垂直于接触面向下。( )', 'A.正确', 'B,错误', '在实验中,补偿阻力时要把物悬挂在细绳的一端。 A:正确', 'B,错误', '[答案]T', '4、任何情况下,物体的加速度方向始终与它所受的合力方向一致。( ) A 正确 B.错误', '【答案】不对的', '10.如果物体处于超重状态,它必然有向上的加速度。( )', 'A.正确', 'B、错误', '7.通过打出的纸带可以确定物体运动的时间和物体运动的位移。( ) A,正确', 'B.错误', '答案:错的', '六:多空(本题共11小题,总分48分。其中,1-7题为单选,每小题4分;8-11题为多选,每小题5分,全部选对的得5', '分,选对但不全的得2分,有选错得0分)', '【图片】用烧杯盛某种液体,测得液体体积V和液体与烧杯的共同质量m的关系如图所示.请观察图象并根据图象,求:烧杯的质量__________g;液体的', '密度$ρ__液=$________$kg/m^3$;其物理意义是_____.', '汤现姆孙在研究________的实验中发现了', '电子,电子的发现打破了___________的旧观。', '答案:阴极射;原子不可再分 【解析】汤姆孙在研究阴极射线的实验中发现了电子,电子的发现打破了子不可现再分的旧观念。', '1.我国载人登月已完成关键技术攻关,可送3人', '环月、2人登月。某实验小组在完成用单摆测量重力加速度实验后,讨论在月球上用单摆测量月球表面重力加速度的实验方案。用与地球上相同的实验设备,在月球上进行相同的实验,会得到更精确的结果,试写出其中的两个原因:__', '_____。', '【解析】1.周期变长,累积法测量周期的相对误差减小;2.月球上没有空气阻力,消除了空气阻尼引起的系统误差答案:周期变长,累积法测量周期的相对误差减小;月球上没有空气阻力,消除了空气阻尼引起的系统误差', '26.【图片】电阻A和B的电流与其两端电压的关系如图所示.由图可知,电阻A的阻', '值为________$Ω$;将A和B并联后接在$2.5V$的电源上,电路中的总电流为_A.', '10.教室中未搬入桌凳前说话常有嗡嗡的尾声,摆了桌凳坐满了学生后这种现象减轻到似乎听不到了,这是因为', '___________。', '答案:搬入桌凳和坐满学生后吸声面积增大,混响时间变短。'
- # ]
- # labels = [(2, 5), (5, 10), (10, 18), (18, 24), (24, 27), (27, 30), (30, 32), (32, 35), (35, 38), (40, 42), (42, 45), (45, 49), (49, 51), (51, 54)]
- # ner_pipeline.predict(text_list=txts, labels=labels)
- # ner_pipeline.predict()
- # print()
|