
run in the terminal : python Autochecker4Chinese.py
You will get the following result :

Construct a dict to detect the misspelled chinese phrase key is the chinese phrase, value is its
corresponding frequency appeared in corpus.
You can finish this step by collecting corpus from the internet, or you can choose a more easy way,
load some dicts already created by others. Here we choose the second way, construct the dict from
file.
The detecter works in this way: for any phrase not appeared in this dict, the detecter will detect it as a
mis-spelled phrase.

def construct_dict(file_path):

 word_freq = {}
 with open(file_path, "r") as f:
 for line in f:
 info = line.split()
 word = info[0]
 frequency = info[1]
 word_freq[word] = frequency

 return word_freq

Solutions of autochecker for chinese

How to use :

1. Make a detecter

FILE_PATH = "./token_freq_pos%40350k_jieba.txt"
phrase_freq = construct_dict(FILE_PATH)

print(type(phrase_freq))
print(len(phrase_freq))

<type 'dict'>
349045

Make an autocorrecter for the misspelled phrase, we use the edit distance to make a correct-candidate
list for the mis-spelled phrase
We sort the correct-candidate list according to the likelyhood of being the correct phrase, based on the
following rules:

If the candidate's pinyin matches exactly with misspelled phrase's pinyin, we put the candidate in
first order, which means they are the most likely phrase to be selected.
Else if candidate first word's pinyin matches with misspelled phrase's first word's pinyin, we put
the candidate in second order.
Otherwise, we put the candidate in third order.

import pinyin

list for chinese words
read from the words.dic
def load_cn_words_dict(file_path):
 cn_words_dict = ""
 with open(file_path, "r") as f:
 for word in f:
 cn_words_dict += word.strip().decode("utf-8")
 return cn_words_dict

2. Make an autocorrecter

function calculate the edite distance from the chinese phrase
def edits1(phrase, cn_words_dict):
 "All edits that are one edit away from `phrase`."
 phrase = phrase.decode("utf-8")
 splits = [(phrase[:i], phrase[i:]) for i in range(len(phrase) + 1)]
 deletes = [L + R[1:] for L, R in splits if R]
 transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
 replaces = [L + c + R[1:] for L, R in splits if R for c in cn_wo
rds_dict]
 inserts = [L + c + R for L, R in splits for c in cn_words_d
ict]
 return set(deletes + transposes + replaces + inserts)

return the phrease exist in phrase_freq
def known(phrases): return set(phrase for phrase in phrases if phrase.encode("utf-
8") in phrase_freq)

get the candidates phrase of the error phrase
we sort the candidates phrase's importance according to their pinyin
if the candidate phrase's pinyin exactly matches with the error phrase, we put t
hem into first order
if the candidate phrase's first word pinyin matches with the error phrase first
word, we put them into second order
else we put candidate phrase into the third order
def get_candidates(error_phrase):

 candidates_1st_order = []
 candidates_2nd_order = []
 candidates_3nd_order = []

 error_pinyin = pinyin.get(error_phrase, format="strip", delimiter="/").encode(
"utf-8")
 cn_words_dict = load_cn_words_dict("./cn_dict.txt")
 candidate_phrases = list(known(edits1(error_phrase, cn_words_dict)))

 for candidate_phrase in candidate_phrases:
 candidate_pinyin = pinyin.get(candidate_phrase, format="strip", delimiter=
"/").encode("utf-8")
 if candidate_pinyin == error_pinyin:
 candidates_1st_order.append(candidate_phrase)
 elif candidate_pinyin.split("/")[0] == error_pinyin.split("/")[0]:
 candidates_2nd_order.append(candidate_phrase)
 else:
 candidates_3nd_order.append(candidate_phrase)

 return candidates_1st_order, candidates_2nd_order, candidates_3nd_order

def auto_correct(error_phrase):

 c1_order, c2_order, c3_order = get_candidates(error_phrase)
 # print c1_order, c2_order, c3_order
 if c1_order:
 return max(c1_order, key=phrase_freq.get)
 elif c2_order:
 return max(c2_order, key=phrase_freq.get)
 else:
 return max(c3_order, key=phrase_freq.get)

test for the auto_correct
error_phrase_1 = " " # should be " "
error_phrase_2 = " " # should be " "
error_phrase_3 = " " # should be " "

print error_phrase_1, auto_correct(error_phrase_1)
print error_phrase_2, auto_correct(error_phrase_2)
print error_phrase_3, auto_correct(error_phrase_3)

For any given sentence, use jieba do the segmentation,
Get segment list after segmentation is done, check if the remain phrase exists in word_freq dict, if not,
then it is a misspelled phrase
Use auto_correct function to correct the misspelled phrase
Output the correct sentence

import jieba
import string
import re

PUNCTUATION_LIST = string.punctuation
PUNCTUATION_LIST += " ‘“” …… "

3. Correct the misspelled phrase in a sentance

def auto_correct_sentence(error_sentence, verbose=True):

 jieba_cut = jieba.cut(err_test.decode("utf-8"), cut_all=False)
 seg_list = "\t".join(jieba_cut).split("\t")

 correct_sentence = ""

 for phrase in seg_list:

 correct_phrase = phrase
 # check if item is a punctuation
 if phrase not in PUNCTUATION_LIST.decode("utf-8"):
 # check if the phrase in our dict, if not then it is a misspelled phra
se
 if phrase.encode("utf-8") not in phrase_freq.keys():
 correct_phrase = auto_correct(phrase.encode("utf-8"))
 if verbose :
 print phrase, correct_phrase

 correct_sentence += correct_phrase

 if verbose:
 print correct_sentence
 return correct_sentence

err_sent = ' '
correct_sent = auto_correct_sentence(err_sent)

print correct_sent

