Solutions of autochecker for chinese

How to use :

e run in the terminal : python Autochecker4Chinese.py

e You will get the following result :
zpGao:Chinese Spell Autochecker gaozhipeng$ python Autochecker4Chinese.py
Test case 1:
Building prefix dict from the default dictionary .
Loading model from cache /var/folders/sg/nssfd4q_15dj27tqn810xjh6w@000gn/T/jieba.cache
Loading model cost 0.409 seconds.
Prefix dict has been built succesfully.
M 28
W 5
o
original sentence:fl tEIRALIERNEZEARMEEN—T oA !
—33>
corrected sentence: lBFFIRALEENHFEARNMBEN — T 2K !
Test case 2:
L
BW B
AE RE
original sentence: MMEBRPFEMN/N\N KM Z—, ANEZFEW, EF"ABRE"W
==>
corrected sentence:MiMEBHFENW/N\NAKG#HMz—, BRNEFTW, ZEF"ABRE"NEE!
zpGao:Chinese Spell Autochecker gaozhipeng$

1. Make a detecter

e Construct a dict to detect the misspelled chinese phrase, key is the chinese phrase, value is its
corresponding frequency appeared in corpus.

¢ You can finish this step by collecting corpus from the internet, or you can choose a more easy way,
load some dicts already created by others. Here we choose the second way, construct the dict from
file.

e The detecter works in this way: for any phrase not appeared in this dict, the detecter will detect it as a
mis-spelled phrase.

def construct dict(file path):

word freq = {}
with open(file path, "r") as f:

for line in f:

info line.split()
info[0]

frequency = info[l]

word

word freqg[word] = frequency

return word freq

FILE PATH = "./token freq pos%40350k_ jieba.txt"
phrase freq = construct dict(FILE PATH)

print(type(phrase freq))
print(len(phrase freq))

<type 'dict'>
349045

2. Make an autocorrecter

e Make an autocorrecter for the misspelled phrase, we use the edit distance to make a correct-candidate

list for the mis-spelled phrase
e We sort the correct-candidate list according to the likelyhood of being the correct phrase, based on the

following rules:
o [f the candidate's pinyin matches exactly with misspelled phrase's pinyin, we put the candidate in
first order, which means they are the most likely phrase to be selected.
o Else if candidate first word's pinyin matches with misspelled phrase's first word's pinyin, we put

the candidate in second order.
o Otherwise, we put the candidate in third order.

import pinyin

list for chinese words
read from the words.dic
def load cn words dict(file path):
cn_words dict = ""
with open(file path, "r") as f:
for word in f:
cn_words_dict += word.strip().decode("utf-8")

return cn_words_dict

function calculate the edite distance from the chinese phrase
def editsl(phrase, cn _words dict):

"All edits that are one edit away from “phrase”.
phrase = phrase.decode("utf-8")

splits = [(phrase[:1i], phrase[i:]) for i in range(len(phrase) + 1)]

deletes = [L + R[1:] for L, R in splits if R]

transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]

replaces = [L + c + R[1l:] for L, R in splits if R for c in cn wo
rds_dict]

inserts = [L + ¢ + R for L, R in splits for c in cn words d
ict]

return set(deletes + transposes + replaces + inserts)

return the phrease exist in phrase freq
def known(phrases): return set(phrase for phrase in phrases if phrase.encode("utf-
8") in phrase freq)

get the candidates phrase of the error phrase

we sort the candidates phrase's importance according to their pinyin

if the candidate phrase's pinyin exactly matches with the error phrase, we put t
hem into first order

if the candidate phrase's first word pinyin matches with the error phrase first
word, we put them into second order

else we put candidate phrase into the third order

def get candidates(error phrase):

candidates 1lst order

[]
[]
[]

candidates_ 2nd order

candidates_3nd_order

error pinyin = pinyin.get(error phrase, format="strip", delimiter="/").encode(
Ilutf_8 n)
cn_words_dict = load cn words dict("./cn _dict.txt")

candidate phrases = list(known(editsl(error phrase, cn words dict)))

for candidate phrase in candidate phrases:
candidate pinyin = pinyin.get(candidate phrase, format="strip", delimiter=
"/").encode("utf-8")

if candidate pinyin == error pinyin:
candidates 1lst order.append(candidate phrase)

elif candidate pinyin.split("/")[0] == error pinyin.split("/")[0]:
candidates_ 2nd order.append(candidate phrase)

else:

candidates 3nd order.append(candidate phrase)

return candidates 1lst order, candidates 2nd order, candidates 3nd order

def auto_correct(error_ phrase):

cl order, c2 order, c3 order = get candidates(error phrase)
print cl_order, c2_order, c3_order
if cl order:
return max(cl_order, key=phrase freq.get)
elif c2 order:
return max(c2_order, key=phrase freq.get)
else:
return max(c3_order, key=phrase freq.get)

test for the auto correct

error_phrase_1 = "[K}&R" # should be "IKIt'
"IRAZAK" # should be "HRAHZIK"
"D # should be "ME"

error phrase 2

error_phrase_ 3

print error phrase 1, auto correct(error phrase 1)
print error phrase 2, auto correct(error phrase 2)

print error_ phrase 3, auto correct(error phrase 3)

X% IR
RAZKR FRHZIR
W W

3. Correct the misspelled phrase in a sentance

e For any given sentence, use jieba do the segmentation,

o Get segment list after segmentation is done, check if the remain phrase exists in word_freq dict, if not,
then it is a misspelled phrase

e Use auto_correct function to correct the misspelled phrase

e QOutput the correct sentence

import jieba
import string

import re

PUNCTUATION LIST = string.punctuation
PUNCTUATION LIST += ", , ?2 :; {3 [1 ““" () /! %.. () "

def auto_correct_ sentence(error_sentence, verbose=True):

jieba cut = jieba.cut(err test.decode("utf-8"), cut all=False)
seg list = "\t".join(jieba cut).split("\t")

correct_sentence =
for phrase in seg list:

correct phrase = phrase
check if item is a punctuation
if phrase not in PUNCTUATION LIST.decode("utf-8"):
check if the phrase in our dict, if not then it is a misspelled phra
se
if phrase.encode("utf-8") not in phrase freq.keys():
correct phrase = auto correct(phrase.encode("utf-8"))
if verbose :

print phrase, correct phrase
correct_ sentence += correct phrase
if verbose:

print correct sentence

return correct_sentence

err_sent = 'HlEFEIRALEEIMEREMMEEN—T00!

correct sent = auto correct sentence(err_sent)

HL‘I: GRS
JndE W
i)%ﬂ éﬁ*ﬁ
N3P BA T RETUT R A B BER— D 1% !

print correct_ sent

MNaFFIRA T BT REF I BN — 1O

