// Tencent is pleased to support the open source community by making RapidJSON available. // // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. // // Licensed under the MIT License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // http://opensource.org/licenses/MIT // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "unittest.h" #include "rapidjson/reader.h" #include "rapidjson/internal/dtoa.h" #include "rapidjson/internal/itoa.h" #include "rapidjson/memorystream.h" #include using namespace rapidjson; RAPIDJSON_DIAG_PUSH #ifdef __GNUC__ RAPIDJSON_DIAG_OFF(effc++) RAPIDJSON_DIAG_OFF(float-equal) RAPIDJSON_DIAG_OFF(missing-noreturn) #if __GNUC__ >= 7 RAPIDJSON_DIAG_OFF(dangling-else) #endif #endif // __GNUC__ #ifdef __clang__ RAPIDJSON_DIAG_OFF(variadic-macros) RAPIDJSON_DIAG_OFF(c++98-compat-pedantic) #endif template struct ParseBoolHandler : BaseReaderHandler, ParseBoolHandler > { ParseBoolHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } // gcc 4.8.x generates warning in EXPECT_EQ(bool, bool) on this gtest version. // Workaround with EXPECT_TRUE(). bool Bool(bool b) { /*EXPECT_EQ(expect, b); */EXPECT_TRUE(expect == b); ++step_; return true; } unsigned step_; }; TEST(Reader, ParseTrue) { StringStream s("true"); ParseBoolHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(1u, h.step_); } TEST(Reader, ParseFalse) { StringStream s("false"); ParseBoolHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(1u, h.step_); } struct ParseIntHandler : BaseReaderHandler, ParseIntHandler> { ParseIntHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Int(int i) { actual_ = i; step_++; return true; } unsigned step_; int actual_; }; struct ParseUintHandler : BaseReaderHandler, ParseUintHandler> { ParseUintHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Uint(unsigned i) { actual_ = i; step_++; return true; } unsigned step_; unsigned actual_; }; struct ParseInt64Handler : BaseReaderHandler, ParseInt64Handler> { ParseInt64Handler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Int64(int64_t i) { actual_ = i; step_++; return true; } unsigned step_; int64_t actual_; }; struct ParseUint64Handler : BaseReaderHandler, ParseUint64Handler> { ParseUint64Handler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Uint64(uint64_t i) { actual_ = i; step_++; return true; } unsigned step_; uint64_t actual_; }; struct ParseDoubleHandler : BaseReaderHandler, ParseDoubleHandler> { ParseDoubleHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Double(double d) { actual_ = d; step_++; return true; } unsigned step_; double actual_; }; TEST(Reader, ParseNumber_Integer) { #define TEST_INTEGER(Handler, str, x) \ { \ StringStream s(str); \ Handler h; \ Reader reader; \ reader.Parse(s, h); \ EXPECT_EQ(1u, h.step_); \ EXPECT_EQ(x, h.actual_); \ } TEST_INTEGER(ParseUintHandler, "0", 0u); TEST_INTEGER(ParseUintHandler, "123", 123u); TEST_INTEGER(ParseUintHandler, "2147483648", 2147483648u); // 2^31 - 1 (cannot be stored in int) TEST_INTEGER(ParseUintHandler, "4294967295", 4294967295u); TEST_INTEGER(ParseIntHandler, "-123", -123); TEST_INTEGER(ParseIntHandler, "-2147483648", static_cast(0x80000000)); // -2^31 (min of int) TEST_INTEGER(ParseUint64Handler, "4294967296", RAPIDJSON_UINT64_C2(1, 0)); // 2^32 (max of unsigned + 1, force to use uint64_t) TEST_INTEGER(ParseUint64Handler, "18446744073709551615", RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF)); // 2^64 - 1 (max of uint64_t) TEST_INTEGER(ParseInt64Handler, "-2147483649", static_cast(RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0x7FFFFFFF))); // -2^31 -1 (min of int - 1, force to use int64_t) TEST_INTEGER(ParseInt64Handler, "-9223372036854775808", static_cast(RAPIDJSON_UINT64_C2(0x80000000, 0x00000000))); // -2^63 (min of int64_t) // Random test for uint32_t/int32_t { union { uint32_t u; int32_t i; }u; Random r; for (unsigned i = 0; i < 100000; i++) { u.u = r(); char buffer[32]; *internal::u32toa(u.u, buffer) = '\0'; TEST_INTEGER(ParseUintHandler, buffer, u.u); if (u.i < 0) { *internal::i32toa(u.i, buffer) = '\0'; TEST_INTEGER(ParseIntHandler, buffer, u.i); } } } // Random test for uint64_t/int64_t { union { uint64_t u; int64_t i; }u; Random r; for (unsigned i = 0; i < 100000; i++) { u.u = uint64_t(r()) << 32; u.u |= r(); char buffer[32]; if (u.u > uint64_t(4294967295u)) { *internal::u64toa(u.u, buffer) = '\0'; TEST_INTEGER(ParseUint64Handler, buffer, u.u); } if (u.i < -int64_t(2147483648u)) { *internal::i64toa(u.i, buffer) = '\0'; TEST_INTEGER(ParseInt64Handler, buffer, u.i); } } } #undef TEST_INTEGER } template static void TestParseDouble() { #define TEST_DOUBLE(fullPrecision, str, x) \ { \ StringStream s(str); \ ParseDoubleHandler h; \ Reader reader; \ ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); \ EXPECT_EQ(1u, h.step_); \ internal::Double e(x), a(h.actual_); \ if (fullPrecision) { \ EXPECT_EQ(e.Uint64Value(), a.Uint64Value()); \ if (e.Uint64Value() != a.Uint64Value()) \ printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", str, h.actual_, x); \ } \ else { \ EXPECT_EQ(e.Sign(), a.Sign()); /* for 0.0 != -0.0 */ \ EXPECT_DOUBLE_EQ(x, h.actual_); \ } \ } TEST_DOUBLE(fullPrecision, "0.0", 0.0); TEST_DOUBLE(fullPrecision, "-0.0", -0.0); // For checking issue #289 TEST_DOUBLE(fullPrecision, "1.0", 1.0); TEST_DOUBLE(fullPrecision, "-1.0", -1.0); TEST_DOUBLE(fullPrecision, "1.5", 1.5); TEST_DOUBLE(fullPrecision, "-1.5", -1.5); TEST_DOUBLE(fullPrecision, "3.1416", 3.1416); TEST_DOUBLE(fullPrecision, "1E10", 1E10); TEST_DOUBLE(fullPrecision, "1e10", 1e10); TEST_DOUBLE(fullPrecision, "1E+10", 1E+10); TEST_DOUBLE(fullPrecision, "1E-10", 1E-10); TEST_DOUBLE(fullPrecision, "-1E10", -1E10); TEST_DOUBLE(fullPrecision, "-1e10", -1e10); TEST_DOUBLE(fullPrecision, "-1E+10", -1E+10); TEST_DOUBLE(fullPrecision, "-1E-10", -1E-10); TEST_DOUBLE(fullPrecision, "1.234E+10", 1.234E+10); TEST_DOUBLE(fullPrecision, "1.234E-10", 1.234E-10); TEST_DOUBLE(fullPrecision, "1.79769e+308", 1.79769e+308); TEST_DOUBLE(fullPrecision, "2.22507e-308", 2.22507e-308); TEST_DOUBLE(fullPrecision, "-1.79769e+308", -1.79769e+308); TEST_DOUBLE(fullPrecision, "-2.22507e-308", -2.22507e-308); TEST_DOUBLE(fullPrecision, "4.9406564584124654e-324", 4.9406564584124654e-324); // minimum denormal TEST_DOUBLE(fullPrecision, "2.2250738585072009e-308", 2.2250738585072009e-308); // Max subnormal double TEST_DOUBLE(fullPrecision, "2.2250738585072014e-308", 2.2250738585072014e-308); // Min normal positive double TEST_DOUBLE(fullPrecision, "1.7976931348623157e+308", 1.7976931348623157e+308); // Max double TEST_DOUBLE(fullPrecision, "1e-10000", 0.0); // must underflow TEST_DOUBLE(fullPrecision, "18446744073709551616", 18446744073709551616.0); // 2^64 (max of uint64_t + 1, force to use double) TEST_DOUBLE(fullPrecision, "-9223372036854775809", -9223372036854775809.0); // -2^63 - 1(min of int64_t + 1, force to use double) TEST_DOUBLE(fullPrecision, "0.9868011474609375", 0.9868011474609375); // https://github.com/miloyip/rapidjson/issues/120 TEST_DOUBLE(fullPrecision, "123e34", 123e34); // Fast Path Cases In Disguise TEST_DOUBLE(fullPrecision, "45913141877270640000.0", 45913141877270640000.0); TEST_DOUBLE(fullPrecision, "2.2250738585072011e-308", 2.2250738585072011e-308); // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ TEST_DOUBLE(fullPrecision, "1e-00011111111111", 0.0); // Issue #313 TEST_DOUBLE(fullPrecision, "-1e-00011111111111", -0.0); TEST_DOUBLE(fullPrecision, "1e-214748363", 0.0); // Maximum supported negative exponent TEST_DOUBLE(fullPrecision, "1e-214748364", 0.0); TEST_DOUBLE(fullPrecision, "1e-21474836311", 0.0); TEST_DOUBLE(fullPrecision, "0.017976931348623157e+310", 1.7976931348623157e+308); // Max double in another form // Since // abs((2^-1022 - 2^-1074) - 2.2250738585072012e-308) = 3.109754131239141401123495768877590405345064751974375599... x 10^-324 // abs((2^-1022) - 2.2250738585072012e-308) = 1.830902327173324040642192159804623318305533274168872044... x 10 ^ -324 // So 2.2250738585072012e-308 should round to 2^-1022 = 2.2250738585072014e-308 TEST_DOUBLE(fullPrecision, "2.2250738585072012e-308", 2.2250738585072014e-308); // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ // More closer to normal/subnormal boundary // boundary = 2^-1022 - 2^-1075 = 2.225073858507201136057409796709131975934819546351645648... x 10^-308 TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164564e-308", 2.2250738585072009e-308); TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164565e-308", 2.2250738585072014e-308); // 1.0 is in (1.0 - 2^-54, 1.0 + 2^-53) // 1.0 - 2^-54 = 0.999999999999999944488848768742172978818416595458984375 TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984375", 1.0); // round to even TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984374", 0.99999999999999989); // previous double TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984376", 1.0); // next double // 1.0 + 2^-53 = 1.00000000000000011102230246251565404236316680908203125 TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203125", 1.0); // round to even TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203124", 1.0); // previous double TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203126", 1.00000000000000022); // next double // Numbers from https://github.com/floitsch/double-conversion/blob/master/test/cctest/test-strtod.cc TEST_DOUBLE(fullPrecision, "72057594037927928.0", 72057594037927928.0); TEST_DOUBLE(fullPrecision, "72057594037927936.0", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "72057594037927932.0", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "7205759403792793199999e-5", 72057594037927928.0); TEST_DOUBLE(fullPrecision, "7205759403792793200001e-5", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "9223372036854774784.0", 9223372036854774784.0); TEST_DOUBLE(fullPrecision, "9223372036854775808.0", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "9223372036854775296.0", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "922337203685477529599999e-5", 9223372036854774784.0); TEST_DOUBLE(fullPrecision, "922337203685477529600001e-5", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "10141204801825834086073718800384", 10141204801825834086073718800384.0); TEST_DOUBLE(fullPrecision, "10141204801825835211973625643008", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "10141204801825834649023672221696", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "1014120480182583464902367222169599999e-5", 10141204801825834086073718800384.0); TEST_DOUBLE(fullPrecision, "1014120480182583464902367222169600001e-5", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "5708990770823838890407843763683279797179383808", 5708990770823838890407843763683279797179383808.0); TEST_DOUBLE(fullPrecision, "5708990770823839524233143877797980545530986496", 5708990770823839524233143877797980545530986496.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185152", 5708990770823839524233143877797980545530986496.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185151999e-3", 5708990770823838890407843763683279797179383808.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185152001e-3", 5708990770823839524233143877797980545530986496.0); { char n1e308[310]; // '1' followed by 308 '0' n1e308[0] = '1'; for (int i = 1; i < 309; i++) n1e308[i] = '0'; n1e308[309] = '\0'; TEST_DOUBLE(fullPrecision, n1e308, 1E308); } // Cover trimming TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164564802342610972482222202107694551652952390813508" "7914149158913039621106870086438694594645527657207407820621743379988141063267329253552286881372149012" "9811224514518898490572223072852551331557550159143974763979834118019993239625482890171070818506906306" "6665599493827577257201576306269066333264756530000924588831643303777979186961204949739037782970490505" "1080609940730262937128958950003583799967207254304360284078895771796150945516748243471030702609144621" "5722898802581825451803257070188608721131280795122334262883686223215037756666225039825343359745688844" "2390026549819838548794829220689472168983109969836584681402285424333066033985088644580400103493397042" "7567186443383770486037861622771738545623065874679014086723327636718751234567890123456789012345678901" "e-308", 2.2250738585072014e-308); { static const unsigned count = 100; // Tested with 1000000 locally Random r; Reader reader; // Reusing reader to prevent heap allocation // Exhaustively test different exponents with random significant for (uint64_t exp = 0; exp < 2047; exp++) { ; for (unsigned i = 0; i < count; i++) { // Need to call r() in two statements for cross-platform coherent sequence. uint64_t u = (exp << 52) | uint64_t(r() & 0x000FFFFF) << 32; u |= uint64_t(r()); internal::Double d = internal::Double(u); char buffer[32]; *internal::dtoa(d.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); EXPECT_EQ(1u, h.step_); internal::Double a(h.actual_); if (fullPrecision) { EXPECT_EQ(d.Uint64Value(), a.Uint64Value()); if (d.Uint64Value() != a.Uint64Value()) printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", buffer, h.actual_, d.Value()); } else { EXPECT_EQ(d.Sign(), a.Sign()); // for 0.0 != -0.0 EXPECT_DOUBLE_EQ(d.Value(), h.actual_); } } } } // Issue #340 TEST_DOUBLE(fullPrecision, "7.450580596923828e-9", 7.450580596923828e-9); { internal::Double d(1.0); for (int i = 0; i < 324; i++) { char buffer[32]; *internal::dtoa(d.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; Reader reader; ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); EXPECT_EQ(1u, h.step_); internal::Double a(h.actual_); if (fullPrecision) { EXPECT_EQ(d.Uint64Value(), a.Uint64Value()); if (d.Uint64Value() != a.Uint64Value()) printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", buffer, h.actual_, d.Value()); } else { EXPECT_EQ(d.Sign(), a.Sign()); // for 0.0 != -0.0 EXPECT_DOUBLE_EQ(d.Value(), h.actual_); } d = d.Value() * 0.5; } } #undef TEST_DOUBLE } TEST(Reader, ParseNumber_NormalPrecisionDouble) { TestParseDouble(); } TEST(Reader, ParseNumber_FullPrecisionDouble) { TestParseDouble(); } TEST(Reader, ParseNumber_NormalPrecisionError) { static unsigned count = 1000000; Random r; double ulpSum = 0.0; double ulpMax = 0.0; for (unsigned i = 0; i < count; i++) { internal::Double e, a; do { // Need to call r() in two statements for cross-platform coherent sequence. uint64_t u = uint64_t(r()) << 32; u |= uint64_t(r()); e = u; } while (e.IsNan() || e.IsInf() || !e.IsNormal()); char buffer[32]; *internal::dtoa(e.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; Reader reader; ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); EXPECT_EQ(1u, h.step_); a = h.actual_; uint64_t bias1 = e.ToBias(); uint64_t bias2 = a.ToBias(); double ulp = static_cast(bias1 >= bias2 ? bias1 - bias2 : bias2 - bias1); ulpMax = std::max(ulpMax, ulp); ulpSum += ulp; } printf("ULP Average = %g, Max = %g \n", ulpSum / count, ulpMax); } TEST(Reader, ParseNumber_Error) { #define TEST_NUMBER_ERROR(errorCode, str, errorOffset, streamPos) \ { \ char buffer[1001]; \ sprintf(buffer, "%s", str); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ Reader reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ EXPECT_EQ(errorOffset, reader.GetErrorOffset());\ EXPECT_EQ(streamPos, s.Tell());\ } // Number too big to be stored in double. { char n1e309[311]; // '1' followed by 309 '0' n1e309[0] = '1'; for (int i = 1; i < 310; i++) n1e309[i] = '0'; n1e309[310] = '\0'; TEST_NUMBER_ERROR(kParseErrorNumberTooBig, n1e309, 0, 309); } TEST_NUMBER_ERROR(kParseErrorNumberTooBig, "1e309", 0, 5); // Miss fraction part in number. TEST_NUMBER_ERROR(kParseErrorNumberMissFraction, "1.", 2, 2); TEST_NUMBER_ERROR(kParseErrorNumberMissFraction, "1.a", 2, 2); // Miss exponent in number. TEST_NUMBER_ERROR(kParseErrorNumberMissExponent, "1e", 2, 2); TEST_NUMBER_ERROR(kParseErrorNumberMissExponent, "1e_", 2, 2); #undef TEST_NUMBER_ERROR } template struct ParseStringHandler : BaseReaderHandler > { ParseStringHandler() : str_(0), length_(0), copy_() {} ~ParseStringHandler() { EXPECT_TRUE(str_ != 0); if (copy_) free(const_cast(str_)); } ParseStringHandler(const ParseStringHandler&); ParseStringHandler& operator=(const ParseStringHandler&); bool Default() { ADD_FAILURE(); return false; } bool String(const typename Encoding::Ch* str, size_t length, bool copy) { EXPECT_EQ(0, str_); if (copy) { str_ = static_cast(malloc((length + 1) * sizeof(typename Encoding::Ch))); memcpy(const_cast(str_), str, (length + 1) * sizeof(typename Encoding::Ch)); } else str_ = str; length_ = length; copy_ = copy; return true; } const typename Encoding::Ch* str_; size_t length_; bool copy_; }; TEST(Reader, ParseString) { #define TEST_STRING(Encoding, e, x) \ { \ Encoding::Ch* buffer = StrDup(x); \ GenericInsituStringStream is(buffer); \ ParseStringHandler h; \ GenericReader reader; \ reader.Parse(is, h); \ EXPECT_EQ(0, StrCmp(e, h.str_)); \ EXPECT_EQ(StrLen(e), h.length_); \ free(buffer); \ GenericStringStream s(x); \ ParseStringHandler h2; \ GenericReader reader2; \ reader2.Parse(s, h2); \ EXPECT_EQ(0, StrCmp(e, h2.str_)); \ EXPECT_EQ(StrLen(e), h2.length_); \ } // String constant L"\xXX" can only specify character code in bytes, which is not endianness-neutral. // And old compiler does not support u"" and U"" string literal. So here specify string literal by array of Ch. // In addition, GCC 4.8 generates -Wnarrowing warnings when character code >= 128 are assigned to signed integer types. // Therefore, utype is added for declaring unsigned array, and then cast it to Encoding::Ch. #define ARRAY(...) { __VA_ARGS__ } #define TEST_STRINGARRAY(Encoding, utype, array, x) \ { \ static const utype ue[] = array; \ static const Encoding::Ch* e = reinterpret_cast(&ue[0]); \ TEST_STRING(Encoding, e, x); \ } #define TEST_STRINGARRAY2(Encoding, utype, earray, xarray) \ { \ static const utype ue[] = earray; \ static const utype xe[] = xarray; \ static const Encoding::Ch* e = reinterpret_cast(&ue[0]); \ static const Encoding::Ch* x = reinterpret_cast(&xe[0]); \ TEST_STRING(Encoding, e, x); \ } TEST_STRING(UTF8<>, "", "\"\""); TEST_STRING(UTF8<>, "Hello", "\"Hello\""); TEST_STRING(UTF8<>, "Hello\nWorld", "\"Hello\\nWorld\""); TEST_STRING(UTF8<>, "\"\\/\b\f\n\r\t", "\"\\\"\\\\/\\b\\f\\n\\r\\t\""); TEST_STRING(UTF8<>, "\x24", "\"\\u0024\""); // Dollar sign U+0024 TEST_STRING(UTF8<>, "\xC2\xA2", "\"\\u00A2\""); // Cents sign U+00A2 TEST_STRING(UTF8<>, "\xE2\x82\xAC", "\"\\u20AC\""); // Euro sign U+20AC TEST_STRING(UTF8<>, "\xF0\x9D\x84\x9E", "\"\\uD834\\uDD1E\""); // G clef sign U+1D11E // UTF16 TEST_STRING(UTF16<>, L"", L"\"\""); TEST_STRING(UTF16<>, L"Hello", L"\"Hello\""); TEST_STRING(UTF16<>, L"Hello\nWorld", L"\"Hello\\nWorld\""); TEST_STRING(UTF16<>, L"\"\\/\b\f\n\r\t", L"\"\\\"\\\\/\\b\\f\\n\\r\\t\""); TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x0024, 0x0000), L"\"\\u0024\""); TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x00A2, 0x0000), L"\"\\u00A2\""); // Cents sign U+00A2 TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x20AC, 0x0000), L"\"\\u20AC\""); // Euro sign U+20AC TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0xD834, 0xDD1E, 0x0000), L"\"\\uD834\\uDD1E\""); // G clef sign U+1D11E // UTF32 TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('\0'), ARRAY('\"', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('H', 'e', 'l', 'l', 'o', '\0'), ARRAY('\"', 'H', 'e', 'l', 'l', 'o', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('H', 'e', 'l', 'l', 'o', '\n', 'W', 'o', 'r', 'l', 'd', '\0'), ARRAY('\"', 'H', 'e', 'l', 'l', 'o', '\\', 'n', 'W', 'o', 'r', 'l', 'd', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('\"', '\\', '/', '\b', '\f', '\n', '\r', '\t', '\0'), ARRAY('\"', '\\', '\"', '\\', '\\', '/', '\\', 'b', '\\', 'f', '\\', 'n', '\\', 'r', '\\', 't', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x00024, 0x0000), ARRAY('\"', '\\', 'u', '0', '0', '2', '4', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x000A2, 0x0000), ARRAY('\"', '\\', 'u', '0', '0', 'A', '2', '\"', '\0')); // Cents sign U+00A2 TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x020AC, 0x0000), ARRAY('\"', '\\', 'u', '2', '0', 'A', 'C', '\"', '\0')); // Euro sign U+20AC TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x1D11E, 0x0000), ARRAY('\"', '\\', 'u', 'D', '8', '3', '4', '\\', 'u', 'D', 'D', '1', 'E', '\"', '\0')); // G clef sign U+1D11E #undef TEST_STRINGARRAY #undef ARRAY #undef TEST_STRING // Support of null character in string { StringStream s("\"Hello\\u0000World\""); const char e[] = "Hello\0World"; ParseStringHandler > h; Reader reader; reader.Parse(s, h); EXPECT_EQ(0, memcmp(e, h.str_, h.length_ + 1)); EXPECT_EQ(11u, h.length_); } } TEST(Reader, ParseString_Transcoding) { const char* x = "\"Hello\""; const wchar_t* e = L"Hello"; GenericStringStream > is(x); GenericReader, UTF16<> > reader; ParseStringHandler > h; reader.Parse(is, h); EXPECT_EQ(0, StrCmp::Ch>(e, h.str_)); EXPECT_EQ(StrLen(e), h.length_); } TEST(Reader, ParseString_TranscodingWithValidation) { const char* x = "\"Hello\""; const wchar_t* e = L"Hello"; GenericStringStream > is(x); GenericReader, UTF16<> > reader; ParseStringHandler > h; reader.Parse(is, h); EXPECT_EQ(0, StrCmp::Ch>(e, h.str_)); EXPECT_EQ(StrLen(e), h.length_); } TEST(Reader, ParseString_NonDestructive) { StringStream s("\"Hello\\nWorld\""); ParseStringHandler > h; Reader reader; reader.Parse(s, h); EXPECT_EQ(0, StrCmp("Hello\nWorld", h.str_)); EXPECT_EQ(11u, h.length_); } template ParseErrorCode TestString(const typename Encoding::Ch* str) { GenericStringStream s(str); BaseReaderHandler h; GenericReader reader; reader.template Parse(s, h); return reader.GetParseErrorCode(); } TEST(Reader, ParseString_Error) { #define TEST_STRING_ERROR(errorCode, str, errorOffset, streamPos)\ {\ GenericStringStream > s(str);\ BaseReaderHandler > h;\ GenericReader , UTF8<> > reader;\ reader.Parse(s, h);\ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ EXPECT_EQ(errorOffset, reader.GetErrorOffset());\ EXPECT_EQ(streamPos, s.Tell());\ } #define ARRAY(...) { __VA_ARGS__ } #define TEST_STRINGENCODING_ERROR(Encoding, TargetEncoding, utype, array) \ { \ static const utype ue[] = array; \ static const Encoding::Ch* e = reinterpret_cast(&ue[0]); \ EXPECT_EQ(kParseErrorStringInvalidEncoding, TestString(e));\ /* decode error */\ GenericStringStream s(e);\ BaseReaderHandler h;\ GenericReader reader;\ reader.Parse(s, h);\ EXPECT_EQ(kParseErrorStringInvalidEncoding, reader.GetParseErrorCode());\ } // Invalid escape character in string. TEST_STRING_ERROR(kParseErrorStringEscapeInvalid, "[\"\\a\"]", 2, 3); // Incorrect hex digit after \\u escape in string. TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uABCG\"]", 2, 7); // Quotation in \\u escape in string (Issue #288) TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uaaa\"]", 2, 7); TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uD800\\uFFF\"]", 2, 13); // The surrogate pair in string is invalid. TEST_STRING_ERROR(kParseErrorStringUnicodeSurrogateInvalid, "[\"\\uD800X\"]", 2, 8); TEST_STRING_ERROR(kParseErrorStringUnicodeSurrogateInvalid, "[\"\\uD800\\uFFFF\"]", 2, 14); // Missing a closing quotation mark in string. TEST_STRING_ERROR(kParseErrorStringMissQuotationMark, "[\"Test]", 7, 7); // http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt // 3 Malformed sequences // 3.1 Unexpected continuation bytes { char e[] = { '[', '\"', 0, '\"', ']', '\0' }; for (unsigned char c = 0x80u; c <= 0xBFu; c++) { e[2] = static_cast(c); ParseErrorCode error = TestString >(e); EXPECT_EQ(kParseErrorStringInvalidEncoding, error); if (error != kParseErrorStringInvalidEncoding) std::cout << static_cast(c) << std::endl; } } // 3.2 Lonely start characters, 3.5 Impossible bytes { char e[] = { '[', '\"', 0, ' ', '\"', ']', '\0' }; for (unsigned c = 0xC0u; c <= 0xFFu; c++) { e[2] = static_cast(c); int streamPos; if (c <= 0xC1u) streamPos = 3; // 0xC0 - 0xC1 else if (c <= 0xDFu) streamPos = 4; // 0xC2 - 0xDF else if (c <= 0xEFu) streamPos = 5; // 0xE0 - 0xEF else if (c <= 0xF4u) streamPos = 6; // 0xF0 - 0xF4 else streamPos = 3; // 0xF5 - 0xFF TEST_STRING_ERROR(kParseErrorStringInvalidEncoding, e, 2, streamPos); } } // 4 Overlong sequences // 4.1 Examples of an overlong ASCII character TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC0u, 0xAFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x80u, 0xAFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x80u, 0x80u, 0xAFu, '\"', ']', '\0')); // 4.2 Maximum overlong sequences TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC1u, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x9Fu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x8Fu, 0xBFu, 0xBFu, '\"', ']', '\0')); // 4.3 Overlong representation of the NUL character TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x80u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x80u, 0x80u, 0x80u, '\"', ']', '\0')); // 5 Illegal code positions // 5.1 Single UTF-16 surrogates TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xA0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xADu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xAEu, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xAFu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xB0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xBEu, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xBFu, 0xBFu, '\"', ']', '\0')); // Malform UTF-16 sequences TEST_STRINGENCODING_ERROR(UTF16<>, UTF8<>, wchar_t, ARRAY('[', '\"', 0xDC00, 0xDC00, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF16<>, UTF8<>, wchar_t, ARRAY('[', '\"', 0xD800, 0xD800, '\"', ']', '\0')); // Malform UTF-32 sequence TEST_STRINGENCODING_ERROR(UTF32<>, UTF8<>, unsigned, ARRAY('[', '\"', 0x110000, '\"', ']', '\0')); // Malform ASCII sequence TEST_STRINGENCODING_ERROR(ASCII<>, UTF8<>, char, ARRAY('[', '\"', char(0x80u), '\"', ']', '\0')); #undef ARRAY #undef TEST_STRINGARRAY_ERROR } template struct ParseArrayHandler : BaseReaderHandler, ParseArrayHandler > { ParseArrayHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool Uint(unsigned i) { EXPECT_EQ(step_, i); step_++; return true; } bool StartArray() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndArray(SizeType) { step_++; return true; } unsigned step_; }; TEST(Reader, ParseEmptyArray) { char *json = StrDup("[ ] "); InsituStringStream s(json); ParseArrayHandler<0> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(2u, h.step_); free(json); } TEST(Reader, ParseArray) { char *json = StrDup("[1, 2, 3, 4]"); InsituStringStream s(json); ParseArrayHandler<4> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(6u, h.step_); free(json); } TEST(Reader, ParseArray_Error) { #define TEST_ARRAY_ERROR(errorCode, str, errorOffset) \ { \ int streamPos = errorOffset; \ char buffer[1001]; \ strncpy(buffer, str, 1000); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ GenericReader, UTF8<>, CrtAllocator> reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ EXPECT_EQ(errorOffset, reader.GetErrorOffset());\ EXPECT_EQ(streamPos, s.Tell());\ } // Missing a comma or ']' after an array element. TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1", 2); TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1}", 2); TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1 2]", 3); // Array cannot have a trailing comma (without kParseTrailingCommasFlag); // a value must follow a comma TEST_ARRAY_ERROR(kParseErrorValueInvalid, "[1,]", 3); #undef TEST_ARRAY_ERROR } struct ParseObjectHandler : BaseReaderHandler, ParseObjectHandler> { ParseObjectHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool Null() { EXPECT_EQ(8u, step_); step_++; return true; } bool Bool(bool b) { switch(step_) { case 4: EXPECT_TRUE(b); step_++; return true; case 6: EXPECT_FALSE(b); step_++; return true; default: ADD_FAILURE(); return false; } } bool Int(int i) { switch(step_) { case 10: EXPECT_EQ(123, i); step_++; return true; case 15: EXPECT_EQ(1, i); step_++; return true; case 16: EXPECT_EQ(2, i); step_++; return true; case 17: EXPECT_EQ(3, i); step_++; return true; default: ADD_FAILURE(); return false; } } bool Uint(unsigned i) { return Int(static_cast(i)); } bool Double(double d) { EXPECT_EQ(12u, step_); EXPECT_DOUBLE_EQ(3.1416, d); step_++; return true; } bool String(const char* str, size_t, bool) { switch(step_) { case 1: EXPECT_STREQ("hello", str); step_++; return true; case 2: EXPECT_STREQ("world", str); step_++; return true; case 3: EXPECT_STREQ("t", str); step_++; return true; case 5: EXPECT_STREQ("f", str); step_++; return true; case 7: EXPECT_STREQ("n", str); step_++; return true; case 9: EXPECT_STREQ("i", str); step_++; return true; case 11: EXPECT_STREQ("pi", str); step_++; return true; case 13: EXPECT_STREQ("a", str); step_++; return true; default: ADD_FAILURE(); return false; } } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType memberCount) { EXPECT_EQ(19u, step_); EXPECT_EQ(7u, memberCount); step_++; return true; } bool StartArray() { EXPECT_EQ(14u, step_); step_++; return true; } bool EndArray(SizeType elementCount) { EXPECT_EQ(18u, step_); EXPECT_EQ(3u, elementCount); step_++; return true; } unsigned step_; }; TEST(Reader, ParseObject) { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] } "; // Insitu { char* json2 = StrDup(json); InsituStringStream s(json2); ParseObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(20u, h.step_); free(json2); } // Normal { StringStream s(json); ParseObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(20u, h.step_); } } struct ParseEmptyObjectHandler : BaseReaderHandler, ParseEmptyObjectHandler> { ParseEmptyObjectHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType) { EXPECT_EQ(1u, step_); step_++; return true; } unsigned step_; }; TEST(Reader, Parse_EmptyObject) { StringStream s("{ } "); ParseEmptyObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(2u, h.step_); } struct ParseMultipleRootHandler : BaseReaderHandler, ParseMultipleRootHandler> { ParseMultipleRootHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType) { EXPECT_EQ(1u, step_); step_++; return true; } bool StartArray() { EXPECT_EQ(2u, step_); step_++; return true; } bool EndArray(SizeType) { EXPECT_EQ(3u, step_); step_++; return true; } unsigned step_; }; template void TestMultipleRoot() { StringStream s("{}[] a"); ParseMultipleRootHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(2u, h.step_); EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(4u, h.step_); EXPECT_EQ(' ', s.Take()); EXPECT_EQ('a', s.Take()); } TEST(Reader, Parse_MultipleRoot) { TestMultipleRoot(); } TEST(Reader, ParseIterative_MultipleRoot) { TestMultipleRoot(); } template void TestInsituMultipleRoot() { char* buffer = strdup("{}[] a"); InsituStringStream s(buffer); ParseMultipleRootHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(2u, h.step_); EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(4u, h.step_); EXPECT_EQ(' ', s.Take()); EXPECT_EQ('a', s.Take()); free(buffer); } TEST(Reader, ParseInsitu_MultipleRoot) { TestInsituMultipleRoot(); } TEST(Reader, ParseInsituIterative_MultipleRoot) { TestInsituMultipleRoot(); } #define TEST_ERROR(errorCode, str, errorOffset) \ { \ int streamPos = errorOffset; \ char buffer[1001]; \ strncpy(buffer, str, 1000); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ Reader reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ EXPECT_EQ(errorOffset, reader.GetErrorOffset());\ EXPECT_EQ(streamPos, s.Tell());\ } TEST(Reader, ParseDocument_Error) { // The document is empty. TEST_ERROR(kParseErrorDocumentEmpty, "", 0); TEST_ERROR(kParseErrorDocumentEmpty, " ", 1); TEST_ERROR(kParseErrorDocumentEmpty, " \n", 2); // The document root must not follow by other values. TEST_ERROR(kParseErrorDocumentRootNotSingular, "[] 0", 3); TEST_ERROR(kParseErrorDocumentRootNotSingular, "{} 0", 3); TEST_ERROR(kParseErrorDocumentRootNotSingular, "null []", 5); TEST_ERROR(kParseErrorDocumentRootNotSingular, "0 {}", 2); } TEST(Reader, ParseValue_Error) { // Invalid value. TEST_ERROR(kParseErrorValueInvalid, "nulL", 3); TEST_ERROR(kParseErrorValueInvalid, "truE", 3); TEST_ERROR(kParseErrorValueInvalid, "falsE", 4); TEST_ERROR(kParseErrorValueInvalid, "a]", 0); TEST_ERROR(kParseErrorValueInvalid, ".1", 0); } TEST(Reader, ParseObject_Error) { // Missing a name for object member. TEST_ERROR(kParseErrorObjectMissName, "{1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{null:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{true:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{false:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{1:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{[]:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{{}:1}", 1); TEST_ERROR(kParseErrorObjectMissName, "{xyz:1}", 1); // Missing a colon after a name of object member. TEST_ERROR(kParseErrorObjectMissColon, "{\"a\" 1}", 5); TEST_ERROR(kParseErrorObjectMissColon, "{\"a\",1}", 4); // Must be a comma or '}' after an object member TEST_ERROR(kParseErrorObjectMissCommaOrCurlyBracket, "{\"a\":1]", 6); // Object cannot have a trailing comma (without kParseTrailingCommasFlag); // an object member name must follow a comma TEST_ERROR(kParseErrorObjectMissName, "{\"a\":1,}", 7); // This tests that MemoryStream is checking the length in Peek(). { MemoryStream ms("{\"a\"", 1); BaseReaderHandler<> h; Reader reader; EXPECT_FALSE(reader.Parse(ms, h)); EXPECT_EQ(kParseErrorObjectMissName, reader.GetParseErrorCode()); } } #undef TEST_ERROR TEST(Reader, SkipWhitespace) { StringStream ss(" A \t\tB\n \n\nC\r\r \rD \t\n\r E"); const char* expected = "ABCDE"; for (size_t i = 0; i < 5; i++) { SkipWhitespace(ss); EXPECT_EQ(expected[i], ss.Take()); } } // Test implementing a stream without copy stream optimization. // Clone from GenericStringStream except that copy constructor is disabled. template class CustomStringStream { public: typedef typename Encoding::Ch Ch; CustomStringStream(const Ch *src) : src_(src), head_(src) {} Ch Peek() const { return *src_; } Ch Take() { return *src_++; } size_t Tell() const { return static_cast(src_ - head_); } Ch* PutBegin() { RAPIDJSON_ASSERT(false); return 0; } void Put(Ch) { RAPIDJSON_ASSERT(false); } void Flush() { RAPIDJSON_ASSERT(false); } size_t PutEnd(Ch*) { RAPIDJSON_ASSERT(false); return 0; } private: // Prohibit copy constructor & assignment operator. CustomStringStream(const CustomStringStream&); CustomStringStream& operator=(const CustomStringStream&); const Ch* src_; //!< Current read position. const Ch* head_; //!< Original head of the string. }; // If the following code is compiled, it should generate compilation error as predicted. // Because CustomStringStream<> is not copyable via making copy constructor private. #if 0 namespace rapidjson { template struct StreamTraits > { enum { copyOptimization = 1 }; }; } // namespace rapidjson #endif TEST(Reader, CustomStringStream) { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] } "; CustomStringStream > s(json); ParseObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(20u, h.step_); } #include class IStreamWrapper { public: typedef char Ch; IStreamWrapper(std::istream& is) : is_(is) {} Ch Peek() const { int c = is_.peek(); return c == std::char_traits::eof() ? '\0' : static_cast(c); } Ch Take() { int c = is_.get(); return c == std::char_traits::eof() ? '\0' : static_cast(c); } size_t Tell() const { return static_cast(is_.tellg()); } Ch* PutBegin() { assert(false); return 0; } void Put(Ch) { assert(false); } void Flush() { assert(false); } size_t PutEnd(Ch*) { assert(false); return 0; } private: IStreamWrapper(const IStreamWrapper&); IStreamWrapper& operator=(const IStreamWrapper&); std::istream& is_; }; TEST(Reader, Parse_IStreamWrapper_StringStream) { const char* json = "[1,2,3,4]"; std::stringstream ss(json); IStreamWrapper is(ss); Reader reader; ParseArrayHandler<4> h; reader.Parse(is, h); EXPECT_FALSE(reader.HasParseError()); } // Test iterative parsing. #define TESTERRORHANDLING(text, errorCode, offset)\ {\ int streamPos = offset; \ StringStream json(text); \ BaseReaderHandler<> handler; \ Reader reader; \ reader.Parse(json, handler); \ EXPECT_TRUE(reader.HasParseError()); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode()); \ EXPECT_EQ(offset, reader.GetErrorOffset()); \ EXPECT_EQ(streamPos, json.Tell()); \ } TEST(Reader, IterativeParsing_ErrorHandling) { TESTERRORHANDLING("{\"a\": a}", kParseErrorValueInvalid, 6u); TESTERRORHANDLING("", kParseErrorDocumentEmpty, 0u); TESTERRORHANDLING("{}{}", kParseErrorDocumentRootNotSingular, 2u); TESTERRORHANDLING("{1}", kParseErrorObjectMissName, 1u); TESTERRORHANDLING("{\"a\", 1}", kParseErrorObjectMissColon, 4u); TESTERRORHANDLING("{\"a\"}", kParseErrorObjectMissColon, 4u); TESTERRORHANDLING("{\"a\": 1", kParseErrorObjectMissCommaOrCurlyBracket, 7u); TESTERRORHANDLING("[1 2 3]", kParseErrorArrayMissCommaOrSquareBracket, 3u); TESTERRORHANDLING("{\"a: 1", kParseErrorStringMissQuotationMark, 6u); TESTERRORHANDLING("{\"a\":}", kParseErrorValueInvalid, 5u); TESTERRORHANDLING("{\"a\":]", kParseErrorValueInvalid, 5u); TESTERRORHANDLING("[1,2,}", kParseErrorValueInvalid, 5u); TESTERRORHANDLING("[}]", kParseErrorValueInvalid, 1u); TESTERRORHANDLING("[,]", kParseErrorValueInvalid, 1u); TESTERRORHANDLING("[1,,]", kParseErrorValueInvalid, 3u); // Trailing commas are not allowed without kParseTrailingCommasFlag TESTERRORHANDLING("{\"a\": 1,}", kParseErrorObjectMissName, 8u); TESTERRORHANDLING("[1,2,3,]", kParseErrorValueInvalid, 7u); // Any JSON value can be a valid root element in RFC7159. TESTERRORHANDLING("\"ab", kParseErrorStringMissQuotationMark, 3u); TESTERRORHANDLING("truE", kParseErrorValueInvalid, 3u); TESTERRORHANDLING("False", kParseErrorValueInvalid, 0u); TESTERRORHANDLING("true, false", kParseErrorDocumentRootNotSingular, 4u); TESTERRORHANDLING("false, false", kParseErrorDocumentRootNotSingular, 5u); TESTERRORHANDLING("nulL", kParseErrorValueInvalid, 3u); TESTERRORHANDLING("null , null", kParseErrorDocumentRootNotSingular, 5u); TESTERRORHANDLING("1a", kParseErrorDocumentRootNotSingular, 1u); } template > struct IterativeParsingReaderHandler { typedef typename Encoding::Ch Ch; const static uint32_t LOG_NULL = 0x10000000; const static uint32_t LOG_BOOL = 0x20000000; const static uint32_t LOG_INT = 0x30000000; const static uint32_t LOG_UINT = 0x40000000; const static uint32_t LOG_INT64 = 0x50000000; const static uint32_t LOG_UINT64 = 0x60000000; const static uint32_t LOG_DOUBLE = 0x70000000; const static uint32_t LOG_STRING = 0x80000000; const static uint32_t LOG_STARTOBJECT = 0x90000000; const static uint32_t LOG_KEY = 0xA0000000; const static uint32_t LOG_ENDOBJECT = 0xB0000000; const static uint32_t LOG_STARTARRAY = 0xC0000000; const static uint32_t LOG_ENDARRAY = 0xD0000000; const static size_t LogCapacity = 256; uint32_t Logs[LogCapacity]; size_t LogCount; IterativeParsingReaderHandler() : LogCount(0) { } bool Null() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_NULL; return true; } bool Bool(bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_BOOL; return true; } bool Int(int) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT; return true; } bool Uint(unsigned) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT; return true; } bool Int64(int64_t) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT64; return true; } bool Uint64(uint64_t) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_UINT64; return true; } bool Double(double) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_DOUBLE; return true; } bool RawNumber(const Ch*, SizeType, bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STRING; return true; } bool String(const Ch*, SizeType, bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STRING; return true; } bool StartObject() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STARTOBJECT; return true; } bool Key (const Ch*, SizeType, bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_KEY; return true; } bool EndObject(SizeType c) { RAPIDJSON_ASSERT(LogCount < LogCapacity); RAPIDJSON_ASSERT((static_cast(c) & 0xF0000000) == 0); Logs[LogCount++] = LOG_ENDOBJECT | static_cast(c); return true; } bool StartArray() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STARTARRAY; return true; } bool EndArray(SizeType c) { RAPIDJSON_ASSERT(LogCount < LogCapacity); RAPIDJSON_ASSERT((static_cast(c) & 0xF0000000) == 0); Logs[LogCount++] = LOG_ENDARRAY | static_cast(c); return true; } }; TEST(Reader, IterativeParsing_General) { { StringStream is("[1, {\"k\": [1, 2]}, null, false, true, \"string\", 1.2]"); Reader reader; IterativeParsingReaderHandler<> handler; ParseResult r = reader.Parse(is, handler); EXPECT_FALSE(r.IsError()); EXPECT_FALSE(reader.HasParseError()); uint32_t e[] = { handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_STARTOBJECT, handler.LOG_KEY, handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_INT, handler.LOG_ENDARRAY | 2, handler.LOG_ENDOBJECT | 1, handler.LOG_NULL, handler.LOG_BOOL, handler.LOG_BOOL, handler.LOG_STRING, handler.LOG_DOUBLE, handler.LOG_ENDARRAY | 7 }; EXPECT_EQ(sizeof(e) / sizeof(int), handler.LogCount); for (size_t i = 0; i < handler.LogCount; ++i) { EXPECT_EQ(e[i], handler.Logs[i]) << "i = " << i; } } } TEST(Reader, IterativeParsing_Count) { { StringStream is("[{}, {\"k\": 1}, [1], []]"); Reader reader; IterativeParsingReaderHandler<> handler; ParseResult r = reader.Parse(is, handler); EXPECT_FALSE(r.IsError()); EXPECT_FALSE(reader.HasParseError()); uint32_t e[] = { handler.LOG_STARTARRAY, handler.LOG_STARTOBJECT, handler.LOG_ENDOBJECT | 0, handler.LOG_STARTOBJECT, handler.LOG_KEY, handler.LOG_INT, handler.LOG_ENDOBJECT | 1, handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_ENDARRAY | 1, handler.LOG_STARTARRAY, handler.LOG_ENDARRAY | 0, handler.LOG_ENDARRAY | 4 }; EXPECT_EQ(sizeof(e) / sizeof(int), handler.LogCount); for (size_t i = 0; i < handler.LogCount; ++i) { EXPECT_EQ(e[i], handler.Logs[i]) << "i = " << i; } } } TEST(Reader, IterativePullParsing_General) { { IterativeParsingReaderHandler<> handler; uint32_t e[] = { handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_STARTOBJECT, handler.LOG_KEY, handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_INT, handler.LOG_ENDARRAY | 2, handler.LOG_ENDOBJECT | 1, handler.LOG_NULL, handler.LOG_BOOL, handler.LOG_BOOL, handler.LOG_STRING, handler.LOG_DOUBLE, handler.LOG_ENDARRAY | 7 }; StringStream is("[1, {\"k\": [1, 2]}, null, false, true, \"string\", 1.2]"); Reader reader; reader.IterativeParseInit(); while (!reader.IterativeParseComplete()) { size_t oldLogCount = handler.LogCount; EXPECT_TRUE(oldLogCount < sizeof(e) / sizeof(int)) << "overrun"; EXPECT_TRUE(reader.IterativeParseNext(is, handler)) << "parse fail"; EXPECT_EQ(handler.LogCount, oldLogCount + 1) << "handler should be invoked exactly once each time"; EXPECT_EQ(e[oldLogCount], handler.Logs[oldLogCount]) << "wrong event returned"; } EXPECT_FALSE(reader.HasParseError()); EXPECT_EQ(sizeof(e) / sizeof(int), handler.LogCount) << "handler invoked wrong number of times"; // The handler should not be invoked when the JSON has been fully read, but it should not fail size_t oldLogCount = handler.LogCount; EXPECT_TRUE(reader.IterativeParseNext(is, handler)) << "parse-next past complete is allowed"; EXPECT_EQ(handler.LogCount, oldLogCount) << "parse-next past complete should not invoke handler"; EXPECT_FALSE(reader.HasParseError()) << "parse-next past complete should not generate parse error"; } } // Test iterative parsing on kParseErrorTermination. struct HandlerTerminateAtStartObject : public IterativeParsingReaderHandler<> { bool StartObject() { return false; } }; struct HandlerTerminateAtStartArray : public IterativeParsingReaderHandler<> { bool StartArray() { return false; } }; struct HandlerTerminateAtEndObject : public IterativeParsingReaderHandler<> { bool EndObject(SizeType) { return false; } }; struct HandlerTerminateAtEndArray : public IterativeParsingReaderHandler<> { bool EndArray(SizeType) { return false; } }; TEST(Reader, IterativeParsing_ShortCircuit) { { HandlerTerminateAtStartObject handler; Reader reader; StringStream is("[1, {}]"); ParseResult r = reader.Parse(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(4u, r.Offset()); } { HandlerTerminateAtStartArray handler; Reader reader; StringStream is("{\"a\": []}"); ParseResult r = reader.Parse(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(6u, r.Offset()); } { HandlerTerminateAtEndObject handler; Reader reader; StringStream is("[1, {}]"); ParseResult r = reader.Parse(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(5u, r.Offset()); } { HandlerTerminateAtEndArray handler; Reader reader; StringStream is("{\"a\": []}"); ParseResult r = reader.Parse(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(7u, r.Offset()); } } // For covering BaseReaderHandler default functions TEST(Reader, BaseReaderHandler_Default) { BaseReaderHandler<> h; Reader reader; StringStream is("[null, true, -1, 1, -1234567890123456789, 1234567890123456789, 3.14, \"s\", { \"a\" : 1 }]"); EXPECT_TRUE(reader.Parse(is, h)); } template struct TerminateHandler { bool Null() { return e != 0; } bool Bool(bool) { return e != 1; } bool Int(int) { return e != 2; } bool Uint(unsigned) { return e != 3; } bool Int64(int64_t) { return e != 4; } bool Uint64(uint64_t) { return e != 5; } bool Double(double) { return e != 6; } bool RawNumber(const char*, SizeType, bool) { return e != 7; } bool String(const char*, SizeType, bool) { return e != 8; } bool StartObject() { return e != 9; } bool Key(const char*, SizeType, bool) { return e != 10; } bool EndObject(SizeType) { return e != 11; } bool StartArray() { return e != 12; } bool EndArray(SizeType) { return e != 13; } }; #define TEST_TERMINATION(e, json)\ {\ Reader reader;\ TerminateHandler h;\ StringStream is(json);\ EXPECT_FALSE(reader.Parse(is, h));\ EXPECT_EQ(kParseErrorTermination, reader.GetParseErrorCode());\ } TEST(Reader, ParseTerminationByHandler) { TEST_TERMINATION(0, "[null"); TEST_TERMINATION(1, "[true"); TEST_TERMINATION(1, "[false"); TEST_TERMINATION(2, "[-1"); TEST_TERMINATION(3, "[1"); TEST_TERMINATION(4, "[-1234567890123456789"); TEST_TERMINATION(5, "[1234567890123456789"); TEST_TERMINATION(6, "[0.5]"); // RawNumber() is never called TEST_TERMINATION(8, "[\"a\""); TEST_TERMINATION(9, "[{"); TEST_TERMINATION(10, "[{\"a\""); TEST_TERMINATION(11, "[{}"); TEST_TERMINATION(11, "[{\"a\":1}"); // non-empty object TEST_TERMINATION(12, "{\"a\":["); TEST_TERMINATION(13, "{\"a\":[]"); TEST_TERMINATION(13, "{\"a\":[1]"); // non-empty array } TEST(Reader, ParseComments) { const char* json = "// Here is a one-line comment.\n" "{// And here's another one\n" " /*And here's an in-line one.*/\"hello\" : \"world\"," " \"t\" :/* And one with '*' symbol*/true ," "/* A multiline comment\n" " goes here*/" " \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3]" "}/*And the last one to be sure */"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } TEST(Reader, ParseEmptyInlineComment) { const char* json = "{/**/\"hello\" : \"world\", \"t\" : true, \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } TEST(Reader, ParseEmptyOnelineComment) { const char* json = "{//\n\"hello\" : \"world\", \"t\" : true, \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } TEST(Reader, ParseMultipleCommentsInARow) { const char* json = "{/* first comment *//* second */\n" "/* third */ /*fourth*/// last one\n" "\"hello\" : \"world\", \"t\" : true, \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } TEST(Reader, InlineCommentsAreDisabledByDefault) { { const char* json = "{/* Inline comment. */\"hello\" : \"world\", \"t\" : true, \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); } { const char* json = "{\"hello\" : /* Multiline comment starts here\n" " continues here\n" " and ends here */\"world\", \"t\" :true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); } } TEST(Reader, OnelineCommentsAreDisabledByDefault) { const char* json = "{// One-line comment\n\"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); } TEST(Reader, EofAfterOneLineComment) { const char* json = "{\"hello\" : \"world\" // EOF is here -->\0 \n}"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); EXPECT_EQ(kParseErrorObjectMissCommaOrCurlyBracket, reader.GetParseErrorCode()); } TEST(Reader, IncompleteMultilineComment) { const char* json = "{\"hello\" : \"world\" /* EOF is here -->\0 */}"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); EXPECT_EQ(kParseErrorUnspecificSyntaxError, reader.GetParseErrorCode()); } TEST(Reader, IncompleteMultilineComment2) { const char* json = "{\"hello\" : \"world\" /* *\0 */}"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); EXPECT_EQ(kParseErrorUnspecificSyntaxError, reader.GetParseErrorCode()); } TEST(Reader, UnrecognizedComment) { const char* json = "{\"hello\" : \"world\" /! }"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_FALSE(reader.Parse(s, h)); EXPECT_EQ(kParseErrorUnspecificSyntaxError, reader.GetParseErrorCode()); } struct NumbersAsStringsHandler { bool Null() { return true; } bool Bool(bool) { return true; } bool Int(int) { return true; } bool Uint(unsigned) { return true; } bool Int64(int64_t) { return true; } bool Uint64(uint64_t) { return true; } bool Double(double) { return true; } // 'str' is not null-terminated bool RawNumber(const char* str, SizeType length, bool) { EXPECT_TRUE(str != 0); EXPECT_TRUE(expected_len_ == length); EXPECT_TRUE(strncmp(str, expected_, length) == 0); return true; } bool String(const char*, SizeType, bool) { return true; } bool StartObject() { return true; } bool Key(const char*, SizeType, bool) { return true; } bool EndObject(SizeType) { return true; } bool StartArray() { return true; } bool EndArray(SizeType) { return true; } NumbersAsStringsHandler(const char* expected) : expected_(expected) , expected_len_(strlen(expected)) {} const char* expected_; size_t expected_len_; }; TEST(Reader, NumbersAsStrings) { { const char* json = "{ \"pi\": 3.1416 } "; StringStream s(json); NumbersAsStringsHandler h("3.1416"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); } { char* json = StrDup("{ \"pi\": 3.1416 } "); InsituStringStream s(json); NumbersAsStringsHandler h("3.1416"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); free(json); } { const char* json = "{ \"gigabyte\": 1.0e9 } "; StringStream s(json); NumbersAsStringsHandler h("1.0e9"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); } { char* json = StrDup("{ \"gigabyte\": 1.0e9 } "); InsituStringStream s(json); NumbersAsStringsHandler h("1.0e9"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); free(json); } { const char* json = "{ \"pi\": 314.159e-2 } "; StringStream s(json); NumbersAsStringsHandler h("314.159e-2"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); } { char* json = StrDup("{ \"gigabyte\": 314.159e-2 } "); InsituStringStream s(json); NumbersAsStringsHandler h("314.159e-2"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); free(json); } { const char* json = "{ \"negative\": -1.54321 } "; StringStream s(json); NumbersAsStringsHandler h("-1.54321"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); } { char* json = StrDup("{ \"negative\": -1.54321 } "); InsituStringStream s(json); NumbersAsStringsHandler h("-1.54321"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); free(json); } { const char* json = "{ \"pi\": 314.159e-2 } "; std::stringstream ss(json); IStreamWrapper s(ss); NumbersAsStringsHandler h("314.159e-2"); Reader reader; EXPECT_TRUE(reader.Parse(s, h)); } } template void TestTrailingCommas() { { StringStream s("[1,2,3,]"); ParseArrayHandler<3> h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(5u, h.step_); } { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false," "\"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3],}"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } { // whitespace around trailing commas const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false," "\"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3\n,\n]\n,\n} "; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } { // comments around trailing commas const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null," "\"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3/*test*/,/*test*/]/*test*/,/*test*/}"; StringStream s(json); ParseObjectHandler h; Reader reader; EXPECT_TRUE(reader.Parse(s, h)); EXPECT_EQ(20u, h.step_); } } TEST(Reader, TrailingCommas) { TestTrailingCommas(); } TEST(Reader, TrailingCommasIterative) { TestTrailingCommas(); } template void TestMultipleTrailingCommaErrors() { // only a single trailing comma is allowed. { StringStream s("[1,2,3,,]"); ParseArrayHandler<3> h; Reader reader; ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorValueInvalid, r.Code()); EXPECT_EQ(7u, r.Offset()); } { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false," "\"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3,],,}"; StringStream s(json); ParseObjectHandler h; Reader reader; ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorObjectMissName, r.Code()); EXPECT_EQ(95u, r.Offset()); } } TEST(Reader, MultipleTrailingCommaErrors) { TestMultipleTrailingCommaErrors(); } TEST(Reader, MultipleTrailingCommaErrorsIterative) { TestMultipleTrailingCommaErrors(); } template void TestEmptyExceptForCommaErrors() { // not allowed even with trailing commas enabled; the // trailing comma must follow a value. { StringStream s("[,]"); ParseArrayHandler<3> h; Reader reader; ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorValueInvalid, r.Code()); EXPECT_EQ(1u, r.Offset()); } { StringStream s("{,}"); ParseObjectHandler h; Reader reader; ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorObjectMissName, r.Code()); EXPECT_EQ(1u, r.Offset()); } } TEST(Reader, EmptyExceptForCommaErrors) { TestEmptyExceptForCommaErrors(); } TEST(Reader, EmptyExceptForCommaErrorsIterative) { TestEmptyExceptForCommaErrors(); } template void TestTrailingCommaHandlerTermination() { { HandlerTerminateAtEndArray h; Reader reader; StringStream s("[1,2,3,]"); ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(7u, r.Offset()); } { HandlerTerminateAtEndObject h; Reader reader; StringStream s("{\"t\": true, \"f\": false,}"); ParseResult r = reader.Parse(s, h); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(23u, r.Offset()); } } TEST(Reader, TrailingCommaHandlerTermination) { TestTrailingCommaHandlerTermination(); } TEST(Reader, TrailingCommaHandlerTerminationIterative) { TestTrailingCommaHandlerTermination(); } TEST(Reader, ParseNanAndInfinity) { #define TEST_NAN_INF(str, x) \ { \ { \ StringStream s(str); \ ParseDoubleHandler h; \ Reader reader; \ ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); \ EXPECT_EQ(1u, h.step_); \ internal::Double e(x), a(h.actual_); \ EXPECT_EQ(e.IsNan(), a.IsNan()); \ EXPECT_EQ(e.IsInf(), a.IsInf()); \ if (!e.IsNan()) \ EXPECT_EQ(e.Sign(), a.Sign()); \ } \ { \ const char* json = "{ \"naninfdouble\": " str " } "; \ StringStream s(json); \ NumbersAsStringsHandler h(str); \ Reader reader; \ EXPECT_TRUE(reader.Parse(s, h)); \ } \ { \ char* json = StrDup("{ \"naninfdouble\": " str " } "); \ InsituStringStream s(json); \ NumbersAsStringsHandler h(str); \ Reader reader; \ EXPECT_TRUE(reader.Parse(s, h)); \ free(json); \ } \ } #define TEST_NAN_INF_ERROR(errorCode, str, errorOffset) \ { \ int streamPos = errorOffset; \ char buffer[1001]; \ strncpy(buffer, str, 1000); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ Reader reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ EXPECT_EQ(errorOffset, reader.GetErrorOffset());\ EXPECT_EQ(streamPos, s.Tell());\ } double nan = std::numeric_limits::quiet_NaN(); double inf = std::numeric_limits::infinity(); TEST_NAN_INF("NaN", nan); TEST_NAN_INF("-NaN", nan); TEST_NAN_INF("Inf", inf); TEST_NAN_INF("Infinity", inf); TEST_NAN_INF("-Inf", -inf); TEST_NAN_INF("-Infinity", -inf); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "NInf", 1); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "NaInf", 2); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "INan", 1); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "InNan", 2); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "nan", 1); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "-nan", 1); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "NAN", 1); TEST_NAN_INF_ERROR(kParseErrorValueInvalid, "-Infinty", 6); #undef TEST_NAN_INF_ERROR #undef TEST_NAN_INF } RAPIDJSON_DIAG_POP