diyfp.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. // Tencent is pleased to support the open source community by making RapidJSON available.
  2. //
  3. // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
  4. //
  5. // Licensed under the MIT License (the "License"); you may not use this file except
  6. // in compliance with the License. You may obtain a copy of the License at
  7. //
  8. // http://opensource.org/licenses/MIT
  9. //
  10. // Unless required by applicable law or agreed to in writing, software distributed
  11. // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
  12. // CONDITIONS OF ANY KIND, either express or implied. See the License for the
  13. // specific language governing permissions and limitations under the License.
  14. // This is a C++ header-only implementation of Grisu2 algorithm from the publication:
  15. // Loitsch, Florian. "Printing floating-point numbers quickly and accurately with
  16. // integers." ACM Sigplan Notices 45.6 (2010): 233-243.
  17. #ifndef RAPIDJSON_DIYFP_H_
  18. #define RAPIDJSON_DIYFP_H_
  19. #include "../rapidjson.h"
  20. #if defined(_MSC_VER) && defined(_M_AMD64)
  21. #include <intrin.h>
  22. #pragma intrinsic(_BitScanReverse64)
  23. #endif
  24. RAPIDJSON_NAMESPACE_BEGIN
  25. namespace internal {
  26. #ifdef __GNUC__
  27. RAPIDJSON_DIAG_PUSH
  28. RAPIDJSON_DIAG_OFF(effc++)
  29. #endif
  30. struct DiyFp {
  31. DiyFp() {}
  32. DiyFp(uint64_t fp, int exp) : f(fp), e(exp) {}
  33. explicit DiyFp(double d) {
  34. union {
  35. double d;
  36. uint64_t u64;
  37. } u = { d };
  38. int biased_e = static_cast<int>((u.u64 & kDpExponentMask) >> kDpSignificandSize);
  39. uint64_t significand = (u.u64 & kDpSignificandMask);
  40. if (biased_e != 0) {
  41. f = significand + kDpHiddenBit;
  42. e = biased_e - kDpExponentBias;
  43. }
  44. else {
  45. f = significand;
  46. e = kDpMinExponent + 1;
  47. }
  48. }
  49. DiyFp operator-(const DiyFp& rhs) const {
  50. return DiyFp(f - rhs.f, e);
  51. }
  52. DiyFp operator*(const DiyFp& rhs) const {
  53. #if defined(_MSC_VER) && defined(_M_AMD64)
  54. uint64_t h;
  55. uint64_t l = _umul128(f, rhs.f, &h);
  56. if (l & (uint64_t(1) << 63)) // rounding
  57. h++;
  58. return DiyFp(h, e + rhs.e + 64);
  59. #elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
  60. __extension__ typedef unsigned __int128 uint128;
  61. uint128 p = static_cast<uint128>(f) * static_cast<uint128>(rhs.f);
  62. uint64_t h = static_cast<uint64_t>(p >> 64);
  63. uint64_t l = static_cast<uint64_t>(p);
  64. if (l & (uint64_t(1) << 63)) // rounding
  65. h++;
  66. return DiyFp(h, e + rhs.e + 64);
  67. #else
  68. const uint64_t M32 = 0xFFFFFFFF;
  69. const uint64_t a = f >> 32;
  70. const uint64_t b = f & M32;
  71. const uint64_t c = rhs.f >> 32;
  72. const uint64_t d = rhs.f & M32;
  73. const uint64_t ac = a * c;
  74. const uint64_t bc = b * c;
  75. const uint64_t ad = a * d;
  76. const uint64_t bd = b * d;
  77. uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
  78. tmp += 1U << 31; /// mult_round
  79. return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
  80. #endif
  81. }
  82. DiyFp Normalize() const {
  83. #if defined(_MSC_VER) && defined(_M_AMD64)
  84. unsigned long index;
  85. _BitScanReverse64(&index, f);
  86. return DiyFp(f << (63 - index), e - (63 - index));
  87. #elif defined(__GNUC__) && __GNUC__ >= 4
  88. int s = __builtin_clzll(f);
  89. return DiyFp(f << s, e - s);
  90. #else
  91. DiyFp res = *this;
  92. while (!(res.f & (static_cast<uint64_t>(1) << 63))) {
  93. res.f <<= 1;
  94. res.e--;
  95. }
  96. return res;
  97. #endif
  98. }
  99. DiyFp NormalizeBoundary() const {
  100. DiyFp res = *this;
  101. while (!(res.f & (kDpHiddenBit << 1))) {
  102. res.f <<= 1;
  103. res.e--;
  104. }
  105. res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
  106. res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
  107. return res;
  108. }
  109. void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
  110. DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
  111. DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
  112. mi.f <<= mi.e - pl.e;
  113. mi.e = pl.e;
  114. *plus = pl;
  115. *minus = mi;
  116. }
  117. double ToDouble() const {
  118. union {
  119. double d;
  120. uint64_t u64;
  121. }u;
  122. const uint64_t be = (e == kDpDenormalExponent && (f & kDpHiddenBit) == 0) ? 0 :
  123. static_cast<uint64_t>(e + kDpExponentBias);
  124. u.u64 = (f & kDpSignificandMask) | (be << kDpSignificandSize);
  125. return u.d;
  126. }
  127. static const int kDiySignificandSize = 64;
  128. static const int kDpSignificandSize = 52;
  129. static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
  130. static const int kDpMaxExponent = 0x7FF - kDpExponentBias;
  131. static const int kDpMinExponent = -kDpExponentBias;
  132. static const int kDpDenormalExponent = -kDpExponentBias + 1;
  133. static const uint64_t kDpExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
  134. static const uint64_t kDpSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
  135. static const uint64_t kDpHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);
  136. uint64_t f;
  137. int e;
  138. };
  139. inline DiyFp GetCachedPowerByIndex(size_t index) {
  140. // 10^-348, 10^-340, ..., 10^340
  141. static const uint64_t kCachedPowers_F[] = {
  142. RAPIDJSON_UINT64_C2(0xfa8fd5a0, 0x081c0288), RAPIDJSON_UINT64_C2(0xbaaee17f, 0xa23ebf76),
  143. RAPIDJSON_UINT64_C2(0x8b16fb20, 0x3055ac76), RAPIDJSON_UINT64_C2(0xcf42894a, 0x5dce35ea),
  144. RAPIDJSON_UINT64_C2(0x9a6bb0aa, 0x55653b2d), RAPIDJSON_UINT64_C2(0xe61acf03, 0x3d1a45df),
  145. RAPIDJSON_UINT64_C2(0xab70fe17, 0xc79ac6ca), RAPIDJSON_UINT64_C2(0xff77b1fc, 0xbebcdc4f),
  146. RAPIDJSON_UINT64_C2(0xbe5691ef, 0x416bd60c), RAPIDJSON_UINT64_C2(0x8dd01fad, 0x907ffc3c),
  147. RAPIDJSON_UINT64_C2(0xd3515c28, 0x31559a83), RAPIDJSON_UINT64_C2(0x9d71ac8f, 0xada6c9b5),
  148. RAPIDJSON_UINT64_C2(0xea9c2277, 0x23ee8bcb), RAPIDJSON_UINT64_C2(0xaecc4991, 0x4078536d),
  149. RAPIDJSON_UINT64_C2(0x823c1279, 0x5db6ce57), RAPIDJSON_UINT64_C2(0xc2109436, 0x4dfb5637),
  150. RAPIDJSON_UINT64_C2(0x9096ea6f, 0x3848984f), RAPIDJSON_UINT64_C2(0xd77485cb, 0x25823ac7),
  151. RAPIDJSON_UINT64_C2(0xa086cfcd, 0x97bf97f4), RAPIDJSON_UINT64_C2(0xef340a98, 0x172aace5),
  152. RAPIDJSON_UINT64_C2(0xb23867fb, 0x2a35b28e), RAPIDJSON_UINT64_C2(0x84c8d4df, 0xd2c63f3b),
  153. RAPIDJSON_UINT64_C2(0xc5dd4427, 0x1ad3cdba), RAPIDJSON_UINT64_C2(0x936b9fce, 0xbb25c996),
  154. RAPIDJSON_UINT64_C2(0xdbac6c24, 0x7d62a584), RAPIDJSON_UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
  155. RAPIDJSON_UINT64_C2(0xf3e2f893, 0xdec3f126), RAPIDJSON_UINT64_C2(0xb5b5ada8, 0xaaff80b8),
  156. RAPIDJSON_UINT64_C2(0x87625f05, 0x6c7c4a8b), RAPIDJSON_UINT64_C2(0xc9bcff60, 0x34c13053),
  157. RAPIDJSON_UINT64_C2(0x964e858c, 0x91ba2655), RAPIDJSON_UINT64_C2(0xdff97724, 0x70297ebd),
  158. RAPIDJSON_UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), RAPIDJSON_UINT64_C2(0xf8a95fcf, 0x88747d94),
  159. RAPIDJSON_UINT64_C2(0xb9447093, 0x8fa89bcf), RAPIDJSON_UINT64_C2(0x8a08f0f8, 0xbf0f156b),
  160. RAPIDJSON_UINT64_C2(0xcdb02555, 0x653131b6), RAPIDJSON_UINT64_C2(0x993fe2c6, 0xd07b7fac),
  161. RAPIDJSON_UINT64_C2(0xe45c10c4, 0x2a2b3b06), RAPIDJSON_UINT64_C2(0xaa242499, 0x697392d3),
  162. RAPIDJSON_UINT64_C2(0xfd87b5f2, 0x8300ca0e), RAPIDJSON_UINT64_C2(0xbce50864, 0x92111aeb),
  163. RAPIDJSON_UINT64_C2(0x8cbccc09, 0x6f5088cc), RAPIDJSON_UINT64_C2(0xd1b71758, 0xe219652c),
  164. RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), RAPIDJSON_UINT64_C2(0xe8d4a510, 0x00000000),
  165. RAPIDJSON_UINT64_C2(0xad78ebc5, 0xac620000), RAPIDJSON_UINT64_C2(0x813f3978, 0xf8940984),
  166. RAPIDJSON_UINT64_C2(0xc097ce7b, 0xc90715b3), RAPIDJSON_UINT64_C2(0x8f7e32ce, 0x7bea5c70),
  167. RAPIDJSON_UINT64_C2(0xd5d238a4, 0xabe98068), RAPIDJSON_UINT64_C2(0x9f4f2726, 0x179a2245),
  168. RAPIDJSON_UINT64_C2(0xed63a231, 0xd4c4fb27), RAPIDJSON_UINT64_C2(0xb0de6538, 0x8cc8ada8),
  169. RAPIDJSON_UINT64_C2(0x83c7088e, 0x1aab65db), RAPIDJSON_UINT64_C2(0xc45d1df9, 0x42711d9a),
  170. RAPIDJSON_UINT64_C2(0x924d692c, 0xa61be758), RAPIDJSON_UINT64_C2(0xda01ee64, 0x1a708dea),
  171. RAPIDJSON_UINT64_C2(0xa26da399, 0x9aef774a), RAPIDJSON_UINT64_C2(0xf209787b, 0xb47d6b85),
  172. RAPIDJSON_UINT64_C2(0xb454e4a1, 0x79dd1877), RAPIDJSON_UINT64_C2(0x865b8692, 0x5b9bc5c2),
  173. RAPIDJSON_UINT64_C2(0xc83553c5, 0xc8965d3d), RAPIDJSON_UINT64_C2(0x952ab45c, 0xfa97a0b3),
  174. RAPIDJSON_UINT64_C2(0xde469fbd, 0x99a05fe3), RAPIDJSON_UINT64_C2(0xa59bc234, 0xdb398c25),
  175. RAPIDJSON_UINT64_C2(0xf6c69a72, 0xa3989f5c), RAPIDJSON_UINT64_C2(0xb7dcbf53, 0x54e9bece),
  176. RAPIDJSON_UINT64_C2(0x88fcf317, 0xf22241e2), RAPIDJSON_UINT64_C2(0xcc20ce9b, 0xd35c78a5),
  177. RAPIDJSON_UINT64_C2(0x98165af3, 0x7b2153df), RAPIDJSON_UINT64_C2(0xe2a0b5dc, 0x971f303a),
  178. RAPIDJSON_UINT64_C2(0xa8d9d153, 0x5ce3b396), RAPIDJSON_UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
  179. RAPIDJSON_UINT64_C2(0xbb764c4c, 0xa7a44410), RAPIDJSON_UINT64_C2(0x8bab8eef, 0xb6409c1a),
  180. RAPIDJSON_UINT64_C2(0xd01fef10, 0xa657842c), RAPIDJSON_UINT64_C2(0x9b10a4e5, 0xe9913129),
  181. RAPIDJSON_UINT64_C2(0xe7109bfb, 0xa19c0c9d), RAPIDJSON_UINT64_C2(0xac2820d9, 0x623bf429),
  182. RAPIDJSON_UINT64_C2(0x80444b5e, 0x7aa7cf85), RAPIDJSON_UINT64_C2(0xbf21e440, 0x03acdd2d),
  183. RAPIDJSON_UINT64_C2(0x8e679c2f, 0x5e44ff8f), RAPIDJSON_UINT64_C2(0xd433179d, 0x9c8cb841),
  184. RAPIDJSON_UINT64_C2(0x9e19db92, 0xb4e31ba9), RAPIDJSON_UINT64_C2(0xeb96bf6e, 0xbadf77d9),
  185. RAPIDJSON_UINT64_C2(0xaf87023b, 0x9bf0ee6b)
  186. };
  187. static const int16_t kCachedPowers_E[] = {
  188. -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980,
  189. -954, -927, -901, -874, -847, -821, -794, -768, -741, -715,
  190. -688, -661, -635, -608, -582, -555, -529, -502, -475, -449,
  191. -422, -396, -369, -343, -316, -289, -263, -236, -210, -183,
  192. -157, -130, -103, -77, -50, -24, 3, 30, 56, 83,
  193. 109, 136, 162, 189, 216, 242, 269, 295, 322, 348,
  194. 375, 402, 428, 455, 481, 508, 534, 561, 588, 614,
  195. 641, 667, 694, 720, 747, 774, 800, 827, 853, 880,
  196. 907, 933, 960, 986, 1013, 1039, 1066
  197. };
  198. return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
  199. }
  200. inline DiyFp GetCachedPower(int e, int* K) {
  201. //int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
  202. double dk = (-61 - e) * 0.30102999566398114 + 347; // dk must be positive, so can do ceiling in positive
  203. int k = static_cast<int>(dk);
  204. if (dk - k > 0.0)
  205. k++;
  206. unsigned index = static_cast<unsigned>((k >> 3) + 1);
  207. *K = -(-348 + static_cast<int>(index << 3)); // decimal exponent no need lookup table
  208. return GetCachedPowerByIndex(index);
  209. }
  210. inline DiyFp GetCachedPower10(int exp, int *outExp) {
  211. unsigned index = (exp + 348) / 8;
  212. *outExp = -348 + index * 8;
  213. return GetCachedPowerByIndex(index);
  214. }
  215. #ifdef __GNUC__
  216. RAPIDJSON_DIAG_POP
  217. #endif
  218. } // namespace internal
  219. RAPIDJSON_NAMESPACE_END
  220. #endif // RAPIDJSON_DIYFP_H_