123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- #include "StdAfx.h"
- #include "Affine2DEstimator0.h"
- int Affine2DEstimator0::findInliers(const CvMat* m1, const CvMat* m2,
- const CvMat* model, CvMat* _err,
- CvMat* _mask, double threshold)
- {
- int i, count = _err->rows*_err->cols, goodCount = 0;
- const float* err = _err->data.fl;
- uchar* mask = _mask->data.ptr;
- computeReprojError(m1, m2, model, _err);
- threshold *= threshold;
- for (i = 0; i < count; i++)
- goodCount += mask[i] = err[i] <= threshold;
- return goodCount;
- }
- void Affine2DEstimator0::computeReprojError(const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error)
- {
- int count = m1->rows * m1->cols;
- const CvPoint2D64f* from = reinterpret_cast<const CvPoint2D64f*>(m1->data.ptr);
- const CvPoint2D64f* to = reinterpret_cast<const CvPoint2D64f*>(m2->data.ptr);
- const double* F = model->data.db;
- float* err = error->data.fl;
- for (int i = 0; i < count; i++)
- {
- const CvPoint2D64f& f = from[i];
- const CvPoint2D64f& t = to[i];
- double a = F[0] * f.x + F[1] * f.y + F[2] - t.x;
- double b = F[3] * f.x + F[4] * f.y + F[5] - t.y;
- err[i] = (float)sqrt(a*a + b*b);
- }
- }
- int Affine2DEstimator0::runRANSAC(const CvMat* m1, const CvMat* m2, CvMat* model,
- CvMat* mask0, double reprojThreshold,
- double confidence, int maxIters)
- {
- int result = 0;
- cv::Ptr<CvMat> mask = cvCloneMat(mask0);
- cv::Ptr<CvMat> models, err, tmask;
- cv::Ptr<CvMat> ms1, ms2;
- int iter, niters = maxIters;
- int count = m1->rows*m1->cols, maxGoodCount = 0;
- CV_Assert(CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask));
- if (count < modelPoints)
- return false;
- models = cvCreateMat(modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1);
- err = cvCreateMat(1, count, CV_32FC1);
- tmask = cvCreateMat(1, count, CV_8UC1);
- if (count > modelPoints)
- {
- ms1 = cvCreateMat(1, modelPoints, m1->type);
- ms2 = cvCreateMat(1, modelPoints, m2->type);
- }
- else
- {
- niters = 1;
- ms1 = cvCloneMat(m1);
- ms2 = cvCloneMat(m2);
- }
- for (iter = 0; iter < niters; iter++)
- {
- int i, goodCount, nmodels;
- if (count > modelPoints)
- {
- bool found = getSubset(m1, m2, ms1, ms2, 300);
- if (!found)
- {
- if (iter == 0)
- return false;
- break;
- }
- }
- nmodels = runKernel(ms1, ms2, models);
- if (nmodels <= 0)
- continue;
- for (i = 0; i < nmodels; i++)
- {
- CvMat model_i;
- cvGetRows(models, &model_i, i*modelSize.height, (i + 1)*modelSize.height);
- goodCount = findInliers(m1, m2, &model_i, err, tmask, reprojThreshold);
- if (goodCount > MAX(maxGoodCount, modelPoints - 1))
- {
- std::swap(tmask, mask);
- cvCopy(&model_i, model);
- maxGoodCount = goodCount;
- niters = cvRANSACUpdateNumIters(confidence,
- (double)(count - goodCount) / count, modelPoints, niters);
- }
- }
- }
- if (maxGoodCount > 0)
- {
- if (mask != mask0)
- cvCopy(mask, mask0);
- result = maxGoodCount;
- }
- return result;
- }
- Mat getAffineTransform64f0(const Point2d src[], const Point2d dst[])
- {
- Mat M(2, 3, CV_64F), X(6, 1, CV_64F, M.data);
- double a[6 * 6], b[6];
- Mat A(6, 6, CV_64F, a), B(6, 1, CV_64F, b);
- for (int i = 0; i < 3; i++)
- {
- int j = i * 12;
- int k = i * 12 + 6;
- a[j] = a[k + 3] = src[i].x;
- a[j + 1] = a[k + 4] = src[i].y;
- a[j + 2] = a[k + 5] = 1;
- a[j + 3] = a[j + 4] = a[j + 5] = 0;
- a[k] = a[k + 1] = a[k + 2] = 0;
- b[i * 2] = dst[i].x;
- b[i * 2 + 1] = dst[i].y;
- }
- solve(A, B, X);
- return M;
- }
- int Affine2DEstimator0::runKernel(const CvMat* m1, const CvMat* m2, CvMat* model)
- {
- const Point2d* from = reinterpret_cast<const Point2d*>(m1->data.ptr);
- const Point2d* to = reinterpret_cast<const Point2d*>(m2->data.ptr);
- Mat M0 = cv::cvarrToMat(model);
- Mat M = getAffineTransform64f0(from, to);
- CV_Assert(M.size() == M0.size());
- M.convertTo(M0, M0.type());
- return model != NULL ? 1 : 0;
- }
- int estimateAffine2D0(InputArray _from, InputArray _to,
- OutputArray _out, OutputArray _inliers,
- double param1, double param2)
- {
- Mat from = _from.getMat(), to = _to.getMat();
- int count = from.checkVector(2, CV_32F);
- CV_Assert(count >= 0 && to.checkVector(2, CV_32F) == count);
- _out.create(2, 3, CV_64F);
- Mat out = _out.getMat();
- //_inliers.create(count, 1, CV_8U, -1, true);
- _inliers.create(1, count, CV_8U, -1, true);
- Mat inliers = _inliers.getMat();
- inliers = Scalar::all(1);
- Mat dFrom, dTo;
- from.convertTo(dFrom, CV_64F);
- to.convertTo(dTo, CV_64F);
- CvMat F2x3 = out;
- CvMat mask = inliers;
- CvMat m1 = dFrom;
- CvMat m2 = dTo;
- const double epsilon = std::numeric_limits<double>::epsilon();
- param1 = param1 <= 0 ? 3 : param1;
- param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
- return Affine2DEstimator0().runRANSAC(&m1, &m2, &F2x3, &mask, param1, param2);
- }
- bool Affine2DEstimator0::getSubset(const CvMat* m1, const CvMat* m2,
- CvMat* ms1, CvMat* ms2, int maxAttempts)
- {
- cv::AutoBuffer<int> _idx(modelPoints);
- int* idx = _idx;
- int i = 0, j, k, idx_i, iters = 0;
- int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);
- const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;
- int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;
- int count = m1->cols*m1->rows;
- assert(CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0));
- elemSize /= sizeof(int);
- for (; iters < maxAttempts; iters++)
- {
- for (i = 0; i < modelPoints && iters < maxAttempts;)
- {
- idx[i] = idx_i = cvRandInt(&rng) % count;
- for (j = 0; j < i; j++)
- if (idx_i == idx[j])
- break;
- if (j < i)
- continue;
- for (k = 0; k < elemSize; k++)
- {
- ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k];
- ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];
- }
- if (checkPartialSubsets && (!checkSubset(ms1, i + 1) || !checkSubset(ms2, i + 1)))
- {
- iters++;
- continue;
- }
- i++;
- }
- if (!checkPartialSubsets && i == modelPoints &&
- (!checkSubset(ms1, i) || !checkSubset(ms2, i)))
- continue;
- break;
- }
- return i == modelPoints && iters < maxAttempts;
- }
- bool Affine2DEstimator0::checkSubset(const CvMat* ms1, int count)
- {
- int j, k, i, i0, i1;
- CvPoint2D64f* ptr = (CvPoint2D64f*)ms1->data.ptr;
- assert(CV_MAT_TYPE(ms1->type) == CV_64FC2);
- if (checkPartialSubsets)
- i0 = i1 = count - 1;
- else
- i0 = 0, i1 = count - 1;
- for (i = i0; i <= i1; i++)
- {
- // check that the i-th selected point does not belong
- // to a line connecting some previously selected points
- for (j = 0; j < i; j++)
- {
- double dx1 = ptr[j].x - ptr[i].x;
- double dy1 = ptr[j].y - ptr[i].y;
- for (k = 0; k < j; k++)
- {
- double dx2 = ptr[k].x - ptr[i].x;
- double dy2 = ptr[k].y - ptr[i].y;
- if (fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
- break;
- }
- if (k < j)
- break;
- }
- if (j < i)
- break;
- }
- return i >= i1;
- }
- Affine2DEstimator0::Affine2DEstimator0() : modelPoints(3), modelSize(cvSize(3, 2)), maxBasicSolutions(1)
- {
- checkPartialSubsets = true;
- rng = cvRNG(-1);
- }
|