123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697 |
- #include "BigUnsigned.hh"
- // Memory management definitions have moved to the bottom of NumberlikeArray.hh.
- // The templates used by these constructors and converters are at the bottom of
- // BigUnsigned.hh.
- BigUnsigned::BigUnsigned(unsigned long x) { initFromPrimitive (x); }
- BigUnsigned::BigUnsigned(unsigned int x) { initFromPrimitive (x); }
- BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive (x); }
- BigUnsigned::BigUnsigned( long x) { initFromSignedPrimitive(x); }
- BigUnsigned::BigUnsigned( int x) { initFromSignedPrimitive(x); }
- BigUnsigned::BigUnsigned( short x) { initFromSignedPrimitive(x); }
- unsigned long BigUnsigned::toUnsignedLong () const { return convertToPrimitive <unsigned long >(); }
- unsigned int BigUnsigned::toUnsignedInt () const { return convertToPrimitive <unsigned int >(); }
- unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive <unsigned short>(); }
- long BigUnsigned::toLong () const { return convertToSignedPrimitive< long >(); }
- int BigUnsigned::toInt () const { return convertToSignedPrimitive< int >(); }
- short BigUnsigned::toShort () const { return convertToSignedPrimitive< short>(); }
- // BIT/BLOCK ACCESSORS
- void BigUnsigned::setBlock(Index i, Blk newBlock) {
- if (newBlock == 0) {
- if (i < len) {
- blk[i] = 0;
- zapLeadingZeros();
- }
- // If i >= len, no effect.
- } else {
- if (i >= len) {
- // The nonzero block extends the number.
- allocateAndCopy(i+1);
- // Zero any added blocks that we aren't setting.
- for (Index j = len; j < i; j++)
- blk[j] = 0;
- len = i+1;
- }
- blk[i] = newBlock;
- }
- }
- /* Evidently the compiler wants BigUnsigned:: on the return type because, at
- * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
- * proper scope. */
- BigUnsigned::Index BigUnsigned::bitLength() const {
- if (isZero())
- return 0;
- else {
- Blk leftmostBlock = getBlock(len - 1);
- Index leftmostBlockLen = 0;
- while (leftmostBlock != 0) {
- leftmostBlock >>= 1;
- leftmostBlockLen++;
- }
- return leftmostBlockLen + (len - 1) * N;
- }
- }
- void BigUnsigned::setBit(Index bi, bool newBit) {
- Index blockI = bi / N;
- Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
- block = newBit ? (block | mask) : (block & ~mask);
- setBlock(blockI, block);
- }
- // COMPARISON
- BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const {
- // A bigger length implies a bigger number.
- if (len < x.len)
- return less;
- else if (len > x.len)
- return greater;
- else {
- // Compare blocks one by one from left to right.
- Index i = len;
- while (i > 0) {
- i--;
- if (blk[i] == x.blk[i])
- continue;
- else if (blk[i] > x.blk[i])
- return greater;
- else
- return less;
- }
- // If no blocks differed, the numbers are equal.
- return equal;
- }
- }
- // COPY-LESS OPERATIONS
- /*
- * On most calls to copy-less operations, it's safe to read the inputs little by
- * little and write the outputs little by little. However, if one of the
- * inputs is coming from the same variable into which the output is to be
- * stored (an "aliased" call), we risk overwriting the input before we read it.
- * In this case, we first compute the result into a temporary BigUnsigned
- * variable and then copy it into the requested output variable *this.
- * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
- * aliased calls) to generate code for this check.
- *
- * I adopted this approach on 2007.02.13 (see Assignment Operators in
- * BigUnsigned.hh). Before then, put-here operations rejected aliased calls
- * with an exception. I think doing the right thing is better.
- *
- * Some of the put-here operations can probably handle aliased calls safely
- * without the extra copy because (for example) they process blocks strictly
- * right-to-left. At some point I might determine which ones don't need the
- * copy, but my reasoning would need to be verified very carefully. For now
- * I'll leave in the copy.
- */
- #define DTRT_ALIASED(cond, op) \
- if (cond) { \
- BigUnsigned tmpThis; \
- tmpThis.op; \
- *this = tmpThis; \
- return; \
- }
- void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, add(a, b));
- // If one argument is zero, copy the other.
- if (a.len == 0) {
- operator =(b);
- return;
- } else if (b.len == 0) {
- operator =(a);
- return;
- }
- // Some variables...
- // Carries in and out of an addition stage
- bool carryIn, carryOut;
- Blk temp;
- Index i;
- // a2 points to the longer input, b2 points to the shorter
- const BigUnsigned *a2, *b2;
- if (a.len >= b.len) {
- a2 = &a;
- b2 = &b;
- } else {
- a2 = &b;
- b2 = &a;
- }
- // Set prelimiary length and make room in this BigUnsigned
- len = a2->len + 1;
- allocate(len);
- // For each block index that is present in both inputs...
- for (i = 0, carryIn = false; i < b2->len; i++) {
- // Add input blocks
- temp = a2->blk[i] + b2->blk[i];
- // If a rollover occurred, the result is less than either input.
- // This test is used many times in the BigUnsigned code.
- carryOut = (temp < a2->blk[i]);
- // If a carry was input, handle it
- if (carryIn) {
- temp++;
- carryOut |= (temp == 0);
- }
- blk[i] = temp; // Save the addition result
- carryIn = carryOut; // Pass the carry along
- }
- // If there is a carry left over, increase blocks until
- // one does not roll over.
- for (; i < a2->len && carryIn; i++) {
- temp = a2->blk[i] + 1;
- carryIn = (temp == 0);
- blk[i] = temp;
- }
- // If the carry was resolved but the larger number
- // still has blocks, copy them over.
- for (; i < a2->len; i++)
- blk[i] = a2->blk[i];
- // Set the extra block if there's still a carry, decrease length otherwise
- if (carryIn)
- blk[i] = 1;
- else
- len--;
- }
- void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
- if (b.len == 0) {
- // If b is zero, copy a.
- operator =(a);
- return;
- } else if (a.len < b.len)
- // If a is shorter than b, the result is negative.
- throw "BigUnsigned::subtract: "
- "Negative result in unsigned calculation";
- // Some variables...
- bool borrowIn, borrowOut;
- Blk temp;
- Index i;
- // Set preliminary length and make room
- len = a.len;
- allocate(len);
- // For each block index that is present in both inputs...
- for (i = 0, borrowIn = false; i < b.len; i++) {
- temp = a.blk[i] - b.blk[i];
- // If a reverse rollover occurred,
- // the result is greater than the block from a.
- borrowOut = (temp > a.blk[i]);
- // Handle an incoming borrow
- if (borrowIn) {
- borrowOut |= (temp == 0);
- temp--;
- }
- blk[i] = temp; // Save the subtraction result
- borrowIn = borrowOut; // Pass the borrow along
- }
- // If there is a borrow left over, decrease blocks until
- // one does not reverse rollover.
- for (; i < a.len && borrowIn; i++) {
- borrowIn = (a.blk[i] == 0);
- blk[i] = a.blk[i] - 1;
- }
- /* If there's still a borrow, the result is negative.
- * Throw an exception, but zero out this object so as to leave it in a
- * predictable state. */
- if (borrowIn) {
- len = 0;
- throw "BigUnsigned::subtract: Negative result in unsigned calculation";
- } else
- // Copy over the rest of the blocks
- for (; i < a.len; i++)
- blk[i] = a.blk[i];
- // Zap leading zeros
- zapLeadingZeros();
- }
- /*
- * About the multiplication and division algorithms:
- *
- * I searched unsucessfully for fast C++ built-in operations like the `b_0'
- * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
- * Programming'' (replace `place' by `Blk'):
- *
- * ``b_0[:] multiplication of a one-place integer by another one-place
- * integer, giving a two-place answer;
- *
- * ``c_0[:] division of a two-place integer by a one-place integer,
- * provided that the quotient is a one-place integer, and yielding
- * also a one-place remainder.''
- *
- * I also missed his note that ``[b]y adjusting the word size, if
- * necessary, nearly all computers will have these three operations
- * available'', so I gave up on trying to use algorithms similar to his.
- * A future version of the library might include such algorithms; I
- * would welcome contributions from others for this.
- *
- * I eventually decided to use bit-shifting algorithms. To multiply `a'
- * and `b', we zero out the result. Then, for each `1' bit in `a', we
- * shift `b' left the appropriate amount and add it to the result.
- * Similarly, to divide `a' by `b', we shift `b' left varying amounts,
- * repeatedly trying to subtract it from `a'. When we succeed, we note
- * the fact by setting a bit in the quotient. While these algorithms
- * have the same O(n^2) time complexity as Knuth's, the ``constant factor''
- * is likely to be larger.
- *
- * Because I used these algorithms, which require single-block addition
- * and subtraction rather than single-block multiplication and division,
- * the innermost loops of all four routines are very similar. Study one
- * of them and all will become clear.
- */
- /*
- * This is a little inline function used by both the multiplication
- * routine and the division routine.
- *
- * `getShiftedBlock' returns the `x'th block of `num << y'.
- * `y' may be anything from 0 to N - 1, and `x' may be anything from
- * 0 to `num.len'.
- *
- * Two things contribute to this block:
- *
- * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
- *
- * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
- *
- * But we must be careful if `x == 0' or `x == num.len', in
- * which case we should use 0 instead of (2) or (1), respectively.
- *
- * If `y == 0', then (2) contributes 0, as it should. However,
- * in some computer environments, for a reason I cannot understand,
- * `a >> b' means `a >> (b % N)'. This means `num.blk[x-1] >> (N - y)'
- * will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
- * the test `y == 0' handles this case specially.
- */
- inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num,
- BigUnsigned::Index x, unsigned int y) {
- BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
- BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
- return part1 | part2;
- }
- void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
- // If either a or b is zero, set to zero.
- if (a.len == 0 || b.len == 0) {
- len = 0;
- return;
- }
- /*
- * Overall method:
- *
- * Set this = 0.
- * For each 1-bit of `a' (say the `i2'th bit of block `i'):
- * Add `b << (i blocks and i2 bits)' to *this.
- */
- // Variables for the calculation
- Index i, j, k;
- unsigned int i2;
- Blk temp;
- bool carryIn, carryOut;
- // Set preliminary length and make room
- len = a.len + b.len;
- allocate(len);
- // Zero out this object
- for (i = 0; i < len; i++)
- blk[i] = 0;
- // For each block of the first number...
- for (i = 0; i < a.len; i++) {
- // For each 1-bit of that block...
- for (i2 = 0; i2 < N; i2++) {
- if ((a.blk[i] & (Blk(1) << i2)) == 0)
- continue;
- /*
- * Add b to this, shifted left i blocks and i2 bits.
- * j is the index in b, and k = i + j is the index in this.
- *
- * `getShiftedBlock', a short inline function defined above,
- * is now used for the bit handling. It replaces the more
- * complex `bHigh' code, in which each run of the loop dealt
- * immediately with the low bits and saved the high bits to
- * be picked up next time. The last run of the loop used to
- * leave leftover high bits, which were handled separately.
- * Instead, this loop runs an additional time with j == b.len.
- * These changes were made on 2005.01.11.
- */
- for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
- /*
- * The body of this loop is very similar to the body of the first loop
- * in `add', except that this loop does a `+=' instead of a `+'.
- */
- temp = blk[k] + getShiftedBlock(b, j, i2);
- carryOut = (temp < blk[k]);
- if (carryIn) {
- temp++;
- carryOut |= (temp == 0);
- }
- blk[k] = temp;
- carryIn = carryOut;
- }
- // No more extra iteration to deal with `bHigh'.
- // Roll-over a carry as necessary.
- for (; carryIn; k++) {
- blk[k]++;
- carryIn = (blk[k] == 0);
- }
- }
- }
- // Zap possible leading zero
- if (blk[len - 1] == 0)
- len--;
- }
- /*
- * DIVISION WITH REMAINDER
- * This monstrous function mods *this by the given divisor b while storing the
- * quotient in the given object q; at the end, *this contains the remainder.
- * The seemingly bizarre pattern of inputs and outputs was chosen so that the
- * function copies as little as possible (since it is implemented by repeated
- * subtraction of multiples of b from *this).
- *
- * "modWithQuotient" might be a better name for this function, but I would
- * rather not change the name now.
- */
- void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) {
- /* Defending against aliased calls is more complex than usual because we
- * are writing to both *this and q.
- *
- * It would be silly to try to write quotient and remainder to the
- * same variable. Rule that out right away. */
- if (this == &q)
- throw "BigUnsigned::divideWithRemainder: Cannot write quotient and remainder into the same variable";
- /* Now *this and q are separate, so the only concern is that b might be
- * aliased to one of them. If so, use a temporary copy of b. */
- if (this == &b || &q == &b) {
- BigUnsigned tmpB(b);
- divideWithRemainder(tmpB, q);
- return;
- }
- /*
- * Knuth's definition of mod (which this function uses) is somewhat
- * different from the C++ definition of % in case of division by 0.
- *
- * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
- * exceptions thrown. This allows us to preserve both Knuth's demand
- * that a mod 0 == a and the useful property that
- * (a / b) * b + (a % b) == a.
- */
- if (b.len == 0) {
- q.len = 0;
- return;
- }
- /*
- * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
- * *this at all. The quotient is 0 and *this is already the remainder (so leave it alone).
- */
- if (len < b.len) {
- q.len = 0;
- return;
- }
- // At this point we know (*this).len >= b.len > 0. (Whew!)
- /*
- * Overall method:
- *
- * For each appropriate i and i2, decreasing:
- * Subtract (b << (i blocks and i2 bits)) from *this, storing the
- * result in subtractBuf.
- * If the subtraction succeeds with a nonnegative result:
- * Turn on bit i2 of block i of the quotient q.
- * Copy subtractBuf back into *this.
- * Otherwise bit i2 of block i remains off, and *this is unchanged.
- *
- * Eventually q will contain the entire quotient, and *this will
- * be left with the remainder.
- *
- * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
- * But on a single iteration, we don't touch the i lowest blocks of blk
- * (and don't use those of subtractBuf) because these blocks are
- * unaffected by the subtraction: we are subtracting
- * (b << (i blocks and i2 bits)), which ends in at least `i' zero
- * blocks. */
- // Variables for the calculation
- Index i, j, k;
- unsigned int i2;
- Blk temp;
- bool borrowIn, borrowOut;
- /*
- * Make sure we have an extra zero block just past the value.
- *
- * When we attempt a subtraction, we might shift `b' so
- * its first block begins a few bits left of the dividend,
- * and then we'll try to compare these extra bits with
- * a nonexistent block to the left of the dividend. The
- * extra zero block ensures sensible behavior; we need
- * an extra block in `subtractBuf' for exactly the same reason.
- */
- Index origLen = len; // Save real length.
- /* To avoid an out-of-bounds access in case of reallocation, allocate
- * first and then increment the logical length. */
- allocateAndCopy(len + 1);
- len++;
- blk[origLen] = 0; // Zero the added block.
- // subtractBuf holds part of the result of a subtraction; see above.
- Blk *subtractBuf = new Blk[len];
- // Set preliminary length for quotient and make room
- q.len = origLen - b.len + 1;
- q.allocate(q.len);
- // Zero out the quotient
- for (i = 0; i < q.len; i++)
- q.blk[i] = 0;
- // For each possible left-shift of b in blocks...
- i = q.len;
- while (i > 0) {
- i--;
- // For each possible left-shift of b in bits...
- // (Remember, N is the number of bits in a Blk.)
- q.blk[i] = 0;
- i2 = N;
- while (i2 > 0) {
- i2--;
- /*
- * Subtract b, shifted left i blocks and i2 bits, from *this,
- * and store the answer in subtractBuf. In the for loop, `k == i + j'.
- *
- * Compare this to the middle section of `multiply'. They
- * are in many ways analogous. See especially the discussion
- * of `getShiftedBlock'.
- */
- for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
- temp = blk[k] - getShiftedBlock(b, j, i2);
- borrowOut = (temp > blk[k]);
- if (borrowIn) {
- borrowOut |= (temp == 0);
- temp--;
- }
- // Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
- subtractBuf[k] = temp;
- borrowIn = borrowOut;
- }
- // No more extra iteration to deal with `bHigh'.
- // Roll-over a borrow as necessary.
- for (; k < origLen && borrowIn; k++) {
- borrowIn = (blk[k] == 0);
- subtractBuf[k] = blk[k] - 1;
- }
- /*
- * If the subtraction was performed successfully (!borrowIn),
- * set bit i2 in block i of the quotient.
- *
- * Then, copy the portion of subtractBuf filled by the subtraction
- * back to *this. This portion starts with block i and ends--
- * where? Not necessarily at block `i + b.len'! Well, we
- * increased k every time we saved a block into subtractBuf, so
- * the region of subtractBuf we copy is just [i, k).
- */
- if (!borrowIn) {
- q.blk[i] |= (Blk(1) << i2);
- while (k > i) {
- k--;
- blk[k] = subtractBuf[k];
- }
- }
- }
- }
- // Zap possible leading zero in quotient
- if (q.blk[q.len - 1] == 0)
- q.len--;
- // Zap any/all leading zeros in remainder
- zapLeadingZeros();
- // Deallocate subtractBuf.
- // (Thanks to Brad Spencer for noticing my accidental omission of this!)
- delete [] subtractBuf;
- }
- /* BITWISE OPERATORS
- * These are straightforward blockwise operations except that they differ in
- * the output length and the necessity of zapLeadingZeros. */
- void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
- // The bitwise & can't be longer than either operand.
- len = (a.len >= b.len) ? b.len : a.len;
- allocate(len);
- Index i;
- for (i = 0; i < len; i++)
- blk[i] = a.blk[i] & b.blk[i];
- zapLeadingZeros();
- }
- void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
- Index i;
- const BigUnsigned *a2, *b2;
- if (a.len >= b.len) {
- a2 = &a;
- b2 = &b;
- } else {
- a2 = &b;
- b2 = &a;
- }
- allocate(a2->len);
- for (i = 0; i < b2->len; i++)
- blk[i] = a2->blk[i] | b2->blk[i];
- for (; i < a2->len; i++)
- blk[i] = a2->blk[i];
- len = a2->len;
- // Doesn't need zapLeadingZeros.
- }
- void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
- DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
- Index i;
- const BigUnsigned *a2, *b2;
- if (a.len >= b.len) {
- a2 = &a;
- b2 = &b;
- } else {
- a2 = &b;
- b2 = &a;
- }
- allocate(a2->len);
- for (i = 0; i < b2->len; i++)
- blk[i] = a2->blk[i] ^ b2->blk[i];
- for (; i < a2->len; i++)
- blk[i] = a2->blk[i];
- len = a2->len;
- zapLeadingZeros();
- }
- void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
- DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
- if (b < 0) {
- if (b << 1 == 0)
- throw "BigUnsigned::bitShiftLeft: "
- "Pathological shift amount not implemented";
- else {
- bitShiftRight(a, -b);
- return;
- }
- }
- Index shiftBlocks = b / N;
- unsigned int shiftBits = b % N;
- // + 1: room for high bits nudged left into another block
- len = a.len + shiftBlocks + 1;
- allocate(len);
- Index i, j;
- for (i = 0; i < shiftBlocks; i++)
- blk[i] = 0;
- for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
- blk[i] = getShiftedBlock(a, j, shiftBits);
- // Zap possible leading zero
- if (blk[len - 1] == 0)
- len--;
- }
- void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) {
- DTRT_ALIASED(this == &a, bitShiftRight(a, b));
- if (b < 0) {
- if (b << 1 == 0)
- throw "BigUnsigned::bitShiftRight: "
- "Pathological shift amount not implemented";
- else {
- bitShiftLeft(a, -b);
- return;
- }
- }
- // This calculation is wacky, but expressing the shift as a left bit shift
- // within each block lets us use getShiftedBlock.
- Index rightShiftBlocks = (b + N - 1) / N;
- unsigned int leftShiftBits = N * rightShiftBlocks - b;
- // Now (N * rightShiftBlocks - leftShiftBits) == b
- // and 0 <= leftShiftBits < N.
- if (rightShiftBlocks >= a.len + 1) {
- // All of a is guaranteed to be shifted off, even considering the left
- // bit shift.
- len = 0;
- return;
- }
- // Now we're allocating a positive amount.
- // + 1: room for high bits nudged left into another block
- len = a.len + 1 - rightShiftBlocks;
- allocate(len);
- Index i, j;
- for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
- blk[i] = getShiftedBlock(a, j, leftShiftBits);
- // Zap possible leading zero
- if (blk[len - 1] == 0)
- len--;
- }
- // INCREMENT/DECREMENT OPERATORS
- // Prefix increment
- void BigUnsigned::operator ++() {
- Index i;
- bool carry = true;
- for (i = 0; i < len && carry; i++) {
- blk[i]++;
- carry = (blk[i] == 0);
- }
- if (carry) {
- // Allocate and then increase length, as in divideWithRemainder
- allocateAndCopy(len + 1);
- len++;
- blk[i] = 1;
- }
- }
- // Postfix increment: same as prefix
- void BigUnsigned::operator ++(int) {
- operator ++();
- }
- // Prefix decrement
- void BigUnsigned::operator --() {
- if (len == 0)
- throw "BigUnsigned::operator --(): Cannot decrement an unsigned zero";
- Index i;
- bool borrow = true;
- for (i = 0; borrow; i++) {
- borrow = (blk[i] == 0);
- blk[i]--;
- }
- // Zap possible leading zero (there can only be one)
- if (blk[len - 1] == 0)
- len--;
- }
- // Postfix decrement: same as prefix
- void BigUnsigned::operator --(int) {
- operator --();
- }
|