123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 |
- # @Author : lightXu
- # @File : resolve.py
- # @Time : 2018/12/3 0003 上午 10:16
- import time
- import traceback
- import xml.etree.cElementTree as ET
- from django.conf import settings
- import segment.logging_config as logging
- import segment.sheet_resolve.analysis.choice.analysis_choice as resolve_choice
- import segment.sheet_resolve.analysis.choice.choice_box as choice_box
- import segment.sheet_resolve.analysis.choice.choice_line_box as choice_line_box
- import segment.sheet_resolve.analysis.cloze.analysis_cloze as resolve_cloze
- import segment.sheet_resolve.analysis.cloze.cloze_line_box as resolve_cloze_line_box
- import segment.sheet_resolve.analysis.exam_number.exam_number_box as resolve_exam_number_box
- import segment.sheet_resolve.analysis.exam_number.exam_number_row_column as exam_number_row_column
- import segment.sheet_resolve.analysis.sheet.analysis_sheet as resolve_sheet
- import segment.sheet_resolve.analysis.solve.mark_box as resolve_mark_box
- import segment.sheet_resolve.analysis.solve.mark_line_box as resolve_mark_line_box
- from segment.sheet_resolve.tools import utils
- from segment.sheet_resolve.tools.tf_sess import TfSess
- from segment.sheet_resolve.tools.tf_settings import xml_template_path, model_dict
- from segment.sheet_resolve.tools.utils import read_single_img, read_xml_to_json, create_xml
- from segment.sheet_resolve.analysis.sheet.sheet_adjust import adjust_item_edge_by_gray_image
- from segment.sheet_resolve.analysis.sheet.sheet_infer import infer_bar_code, box_infer_and_complete
- from segment.sheet_resolve.analysis.sheet.sheet_infer import infer_exam_number, adjust_exam_number, exam_number_infer_by_s
- from segment.sheet_resolve.analysis.sheet.choice_infer import infer_choice_m
- logger = logging.getLogger(settings.LOGGING_TYPE)
- sheet_infer_dict = dict(bar_code=True,
- choice_m=True,
- exam_number=True,
- common_sheet=False)
- infer_choice_m_flag = False
- def sheet(series_number, image_path, image, conf_thresh, mns_thresh, subject, sheet_sess, ocr=''):
- global infer_choice_m_flag
- model_type = subject
- classes = list(model_dict[model_type]['classes'])
- coordinate_bias_dict = model_dict[model_type]['class_coordinate_bias']
- if '_blank' in model_type:
- model_type = model_type.replace("_blank", "")
- sheets_dict = resolve_sheet.get_single_image_sheet_regions(model_type, image_path, image, classes,
- sheet_sess.sess, sheet_sess.net,
- conf_thresh, mns_thresh, coordinate_bias_dict)
- h, w = image.shape[0], image.shape[1]
- regions = sheets_dict['regions']
- fetched_class = [ele['class_name'] for ele in regions]
- try:
- regions = adjust_item_edge_by_gray_image(image, regions)
- except Exception as e:
- traceback.print_exc()
- logger.info('试卷:{} 自适应边框失败: {}'.format(image_path, e))
- if sheet_infer_dict['bar_code']:
- try:
- if ('bar_code' not in fetched_class) and ocr:
- attention_region = [ele for ele in regions if ele['class_name'] == 'attention']
- bar_code_list = infer_bar_code(image, ocr, attention_region)
- regions.extend(bar_code_list)
- except Exception as e:
- traceback.print_exc()
- logger.info('试卷:{} 条形码推断失败: {}'.format(image_path, e))
- if sheet_infer_dict['exam_number']:
- try:
- cond1 = 'exam_number' in fetched_class
- tmp = ['info_title', 'qr_code', 'bar_code', 'choice', 'choice_m', 'exam_number_w']
- cond2 = True in [True for ele in tmp if ele in fetched_class] # 第一面特征
- cond3 = 'exam_number_w' in fetched_class
- cond4 = 'exam_number_s' in fetched_class
- # if cond1 and cond3 and not cond4:
- if cond1 and cond3:
- regions = adjust_exam_number(regions)
- if not cond1 and cond4:
- exam_number_list = exam_number_infer_by_s(image, regions)
- regions.extend(exam_number_list)
- if not cond1 and not cond4 and cond2 and ocr:
- exam_number_list = infer_exam_number(image, ocr, regions)
- regions.extend(exam_number_list)
- except Exception as e:
- traceback.print_exc()
- logger.info('试卷:{} 考号推断失败: {}'.format(image_path, e))
- if sheet_infer_dict['choice_m']:
- try:
- choice_m_list = infer_choice_m(image, regions, ocr)
- #remain_choice_m = []
- if len(choice_m_list) > 0:
- choice_m_old_list = [ele for ele in regions if 'choice_m' == ele['class_name']]
- for infer_box in choice_m_list.copy():
- infer_loc = infer_box['bounding_box']
- for tf_box in choice_m_old_list:
- tf_loc = tf_box['bounding_box']
- iou = utils.cal_iou(infer_loc, tf_loc)
- # if iou[0] > 0.70 or iou[1] > 0.70 or iou[2] > 0.70:
- # if iou[0] > 0.70 or iou[2] > 0.70:
- if iou[0] > 0.85:
- # if infer_box not in remain_choice_m:
- # remain_choice_m.append(infer_box)
- # choice_m_list.remove(infer_box)
- regions.remove(tf_box)
- # break
- elif iou[0] > 0:
- choice_m_list.remove(infer_box)
- break
- #remain_choice_m.extend(choice_m_list)
- # regions = [ele for ele in regions if 'choice_m' != ele['class_name']]
- # regions.extend(remain_choice_m)
- regions.extend(choice_m_list)
- infer_choice_m_flag = True
- except Exception as e:
- traceback.print_exc()
- logger.info('试卷:{} 选择题推断失败: {}'.format(image_path, e))
- if sheet_infer_dict['common_sheet']:
- try:
- regions = box_infer_and_complete(image, regions, ocr)
- except Exception as e:
- traceback.print_exc()
- logger.info('试卷:{} 识别框补全推断失败: {}'.format(image_path, e))
- try:
- adjust_regions = adjust_item_edge_by_gray_image(image, regions)
- except Exception as e:
- adjust_regions = regions
- traceback.print_exc()
- logger.info('试卷:{} 自适应边框失败: {}'.format(image_path, e))
- sheets_dict.update({'regions': adjust_regions})
- # generate xml
- tree = ET.parse(xml_template_path)
- xml_save_path = sheets_dict['img_name'].replace('.jpg', '.xml')
- root = tree.getroot()
- series = ET.SubElement(root, 'paper_id')
- series.text = series_number
- img_shape = image.shape
- project = ET.SubElement(root, 'size', {})
- width = ET.SubElement(project, 'width')
- width.text = str(img_shape[1])
- height = ET.SubElement(project, 'height')
- height.text = str(img_shape[0])
- depth = ET.SubElement(project, 'depth')
- if len(img_shape) >= 3:
- depth.text = '3'
- else:
- depth.text = '1'
- for ele in regions:
- name = ele['class_name']
- xmin = ele['bounding_box']['xmin']
- ymin = ele['bounding_box']['ymin']
- xmax = ele['bounding_box']['xmax']
- ymax = ele['bounding_box']['ymax']
- tree = create_xml(name, tree, xmin, ymin, xmax, ymax)
- tree.write(xml_save_path)
- return sheets_dict, xml_save_path
- def choice(image, regions, xml_path, conf_thresh, mns_thresh, choice_sess):
- model_type = 'choice'
- classes = model_dict[model_type]['classes']
- coordinate_bias_dict = model_dict[model_type]['class_coordinate_bias']
- choice_list = []
- for ele in regions:
- if ele["class_name"] == 'choice':
- choice_bbox = ele['bounding_box']
- left = choice_bbox['xmin']
- top = choice_bbox['ymin']
- choice_img = utils.crop_region(image, choice_bbox)
- choice_dict_tf = resolve_choice. \
- get_single_image_sheet_regions('choice', choice_img, classes,
- choice_sess.sess, choice_sess.net, conf_thresh, mns_thresh,
- coordinate_bias_dict)
- choice_list = choice_list + choice_line_box.choice_line(left, top, choice_img, choice_dict_tf, xml_path)
- return choice_list
- def choice_row_col(image, regions, xml_path, conf_thresh, mns_thresh, choice_sess):
- model_type = 'choice_m'
- classes = model_dict[model_type]['classes']
- coordinate_bias_dict = model_dict[model_type]['class_coordinate_bias']
- choice_list = []
- for ele in regions:
- if ele["class_name"] == 'choice':
- choice_box = ele['bounding_box']
- left = choice_box['xmin']
- top = choice_box['ymin']
- choice_img = utils.crop_region(image, choice_box)
- choice_m_dict_tf = resolve_choice. \
- get_single_image_sheet_regions('choice_m', choice_img, classes,
- choice_sess.sess, choice_sess.net, conf_thresh, mns_thresh,
- coordinate_bias_dict)
- choice_list = choice_list + choice_line_box.choice_line_with_number(left, top, choice_img, choice_m_dict_tf, xml_path)
- return choice_list
- def choice_m_row_col(image, regions, xml_path):
- choice_m_dict_tf = [ele for ele in regions if ele['class_name'] == 'choice_m']
- # choice_m_row_col_with_number
- choice_list = []
- try:
- # choice_list = choice_box.get_number_by_enlarge_choice_m(image, choice_m_dict_tf, xml_path)
- # if infer_choice_m_flag:
- # choice_list = choice_line_box.choice_m_adjust(image, choice_m_dict_tf)
- #
- # else:
- # choice_list = choice_line_box.choice_m_row_col(image, choice_m_dict_tf, xml_path) # 找选择题行列、分数
- choice_list = choice_line_box.choice_m_row_col(image, choice_m_dict_tf, xml_path) # 找选择题行列、分数
- tree = ET.parse(xml_path) # xml tree
- for index_num, box in enumerate(choice_list):
- if len(box['bounding_box']) > 0:
- abcd = box['bounding_box']
- number = str(box['number'])
- name = '{}_{}*{}_{}_{}'.format('choice_m', box['rows'], box['cols'], box['direction'], number)
- tree = utils.create_xml(name, tree,
- abcd['xmin'], abcd['ymin'],
- abcd['xmax'], abcd['ymax'])
- tree.write(xml_path)
- except Exception as e:
- traceback.print_exc()
- print(e)
- return choice_list
- def exam_number(image, regions, xml_path):
- exam_number_dict = {}
- for ele in regions:
- if ele["class_name"] == 'exam_number':
- exam_number_dict = ele
- exam_number_box = exam_number_dict['bounding_box']
- left = exam_number_box['xmin']
- top = exam_number_box['ymin']
- exam_number_img = utils.crop_region(image, exam_number_box)
- # exam_number_dict = resolve_exam_number_box.exam_number(left, top, exam_number_img, xml_path)
- exam_number_dict = resolve_exam_number_box.exam_number_whole(left, top, exam_number_img, xml_path)
- # print(exam_number_dict)
- return exam_number_dict
- def exam_number_row_col(image, regions, xml_path):
- exam_number_dict = {}
- for ele in regions:
- if ele["class_name"] == 'exam_number':
- exam_number_dict = ele
- exam_number_box = exam_number_dict['bounding_box']
- left = exam_number_box['xmin']
- top = exam_number_box['ymin']
- exam_number_img = utils.crop_region(image, exam_number_box)
- exam_number_row_col_dict = exam_number_row_column.get_exam_number_row_and_col(left, top, exam_number_img)
- tree = ET.parse(xml_path) # xml tree
- if len(exam_number_row_col_dict) > 0:
- exam_number_box = exam_number_row_col_dict['bounding_box']
- name = '{}_{}*{}_{}'.format('exam_number',
- exam_number_row_col_dict['rows'],
- exam_number_row_col_dict['cols'],
- exam_number_row_col_dict['direction'])
- tree = utils.create_xml(name, tree,
- exam_number_box['xmin'], exam_number_box['ymin'],
- exam_number_box['xmax'], exam_number_box['ymax'])
- tree.write(xml_path)
- return [exam_number_row_col_dict]
- else:
- tree = utils.create_xml('exam_number', tree,
- exam_number_box['xmin'], exam_number_box['ymin'],
- exam_number_box['xmax'], exam_number_box['ymax'])
- tree.write(xml_path)
- return []
- def cloze(image, regions, xml_path, conf_thresh, mns_thresh, cloze_sess):
- classes = model_dict['cloze']['classes']
- coordinate_bias_dict = model_dict['cloze']['class_coordinate_bias']
- cloze_list = []
- for ele in regions:
- if ele["class_name"] == 'cloze':
- cloze_box = ele['bounding_box']
- left = cloze_box['xmin']
- top = cloze_box['ymin']
- cloze_img = utils.crop_region(image, cloze_box)
- cloze_dict_tf = resolve_cloze.get_single_image_sheet_regions('cloze', cloze_img, classes,
- cloze_sess.sess, cloze_sess.net, conf_thresh,
- mns_thresh, coordinate_bias_dict)
- cloze_list = cloze_list + resolve_cloze_line_box.cloze_line(left, top, cloze_img, cloze_dict_tf['regions'], xml_path)
- return cloze_list
- def solve_with_mark(image, regions, xml_path):
- solve_list = []
- mark_list = []
- for ele in regions.copy():
- if 'solve' in ele["class_name"]:
- exam_number_box = ele['bounding_box']
- left = exam_number_box['xmin']
- top = exam_number_box['ymin']
- exam_number_img = utils.crop_region(image, exam_number_box)
- solve_mark_dict = resolve_mark_box.solve_mark(left, top, exam_number_img, xml_path)
- if len(solve_mark_dict) > 0:
- ele['class_name'] = 'solve_'+str(solve_mark_dict['number'])
- solve_list.append(ele)
- mark_list.append(solve_mark_dict)
- return solve_list, mark_list
- def solve(image, regions, xml_path):
- solve_list = []
- tree = ET.parse(xml_path)
- for ele in regions.copy():
- if 'solve' in ele["class_name"]:
- exam_number_box = ele['bounding_box']
- exam_number_img = utils.crop_region(image, exam_number_box)
- number = resolve_mark_line_box.solve_line(exam_number_img)
- solve_dict = {'number': number, 'location': exam_number_box, 'default_points': 12}
- solve_list.append(solve_dict)
- tree = utils.create_xml(str(number), tree,
- exam_number_box['xmin'], exam_number_box['ymin'],
- exam_number_box['xmax'], exam_number_box['ymax'])
- tree.write(xml_path)
- return solve_list
- def solve_with_number(regions, xml_path):
- solve_list = []
- for ele in regions:
- if 'solve' in ele["class_name"] or 'composition' in ele["class_name"]:
- solve_dict = {'number': -1, 'default_points': -1}
- ele.update(solve_dict)
- solve_list.append(ele)
- tree = ET.parse(xml_path) # xml tree
- for index_num, box in enumerate(solve_list):
- if len(box['bounding_box']) > 0:
- abcd = box['bounding_box']
- number = str(box['number'])
- default_points = box["default_points"]
- name = '{}_{}_{}'.format(box["class_name"], number, default_points)
- tree = utils.create_xml(name, tree,
- abcd['xmin'], abcd['ymin'],
- abcd['xmax'], abcd['ymax'])
- tree.write(xml_path)
- return solve_list
- def cloze_with_number(regions, xml_path):
- cloze_list = []
- for ele in regions:
- if 'cloze' == ele["class_name"] or "cloze_s" == ele["class_name"]:
- cloze_dict = {'number': -1, 'default_points': -1}
- ele.update(cloze_dict)
- cloze_list.append(ele)
- tree = ET.parse(xml_path) # xml tree
- for index_num, box in enumerate(cloze_list):
- if len(box['bounding_box']) > 0:
- abcd = box['bounding_box']
- number = str(box['number'])
- default_points = box["default_points"]
- name = '{}_{}_{}'.format(box["class_name"], number, default_points)
- tree = utils.create_xml(name, tree,
- abcd['xmin'], abcd['ymin'],
- abcd['xmax'], abcd['ymax'])
- tree.write(xml_path)
- return cloze_list
- def make_together(image_path):
- sheet_sess = TfSess('sheet')
- choice_sess = TfSess('choice')
- cloze_sess = TfSess('cloze')
- raw_img = read_single_img(image_path)
- conf_thresh_0 = 0.7
- mns_thresh_0 = 0.3
- series_number = 123456789
- subject = 'english'
- sheets_dict_0, xml_save_path = sheet(series_number, image_path, raw_img, conf_thresh_0, mns_thresh_0, subject, sheet_sess)
- # 手动修改faster_rcnn识别生成的框
- sheets_dict_0 = read_xml_to_json(xml_save_path)
- regions = sheets_dict_0['regions']
- classes_name = str([ele['class_name'] for ele in regions])
- if 'choice' in classes_name:
- try:
- sheets_dict_0['choice'] = choice(raw_img, regions, xml_save_path, conf_thresh_0, mns_thresh_0, choice_sess)
- except Exception:
- traceback.print_exc()
- if 'exam_number' in classes_name:
- try:
- sheets_dict_0['exam_number'] = exam_number(raw_img, regions, xml_save_path)
- except Exception:
- traceback.print_exc()
- if 'cloze' in classes_name:
- try:
- sheets_dict_0['cloze'] = cloze(raw_img, regions, xml_save_path, conf_thresh_0, mns_thresh_0, cloze_sess)
- except Exception:
- traceback.print_exc()
- if 'solve' in classes_name:
- try:
- solve_list, mark_list = solve(raw_img, regions, xml_save_path,)
- sheets_dict_0['solve'] = solve_list
- sheets_dict_0['mark'] = mark_list
- except Exception:
- traceback.print_exc()
- # print(sheets_dict_0)
- return sheets_dict_0
- # if __name__ == '__main__':
- # start_time = time.time()
- #
- # image_path_0 = os.path.join(r'C:\Users\Administrator\Desktop\sheet\correct\back_sizes\template',
- # '20180719004308818_0020.jpg')
- # make_together(image_path_0)
- # end_time = time.time()
- # print('time cost: ', (end_time - start_time))
|