123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- # @Author : lightXu
- # @File : formula_segment_and_show.py
- # @Time : 2019/1/24 0024 下午 13:24
- import time
- import re
- import copy
- import math
- import cv2
- import numpy as np
- import xml.etree.cElementTree as ET
- from segment.formula import mathpix_ocr
- from segment.server import get_ocr_text_and_coordinate_formula
- from segment.image_operation import utils
- def get_coordinates(word_res, formula_words_list):
- res_list = []
- for formula_raw in formula_words_list:
- coordinates_start_index = formula_raw[1][0]
- coordinates_end_index = formula_raw[1][1] - 1
- coordinates_start = word_res['chars'][coordinates_start_index]['location']
- coordinates_end = word_res['chars'][coordinates_end_index]['location']
- coordinates = (coordinates_start['left'], # xmin
- min(coordinates_start['top'], coordinates_end['top']), # ymin
- coordinates_end['left'] + coordinates_end['width'], # xmax
- max(coordinates_start['top'] + coordinates_start['height'],
- coordinates_end['top'] + coordinates_end['height'])) # ymax
- tmp_dict = {'chars': formula_raw[0],
- 'raw_chars': formula_raw[0],
- 'coordinates': coordinates,
- 'middle': (coordinates[0] + int((coordinates[2] - coordinates[0]) // 2),
- coordinates[1] + int((coordinates[3] - coordinates[1]) // 2))}
- res_list.append(tmp_dict)
- return res_list
- def generate_char(words, index_pair, zh=True):
- if index_pair:
- # new_words = words.copy()
- length = index_pair[1] - index_pair[0]
- gen = ''
- if zh:
- for i in range(length):
- gen = '中' + gen
- else:
- for i in range(length):
- gen = 'F' + gen
- words = words.replace(words[index_pair[0]:index_pair[1]], gen)
- return words
- else:
- return words
- def segment(img, save_path, access_token):
- # raw_img = img.copy()
- # img = utils.preprocess(raw_img, None)
- word_result_list = get_ocr_text_and_coordinate_formula(img, access_token)
- formula_coordinates_dict_list = []
- zh_coordinates_dict_list = []
- zh_char_height = 20 # default
- zh_char_width = 15 # default
- zh_char_height_list = []
- zh_char_width_list = []
- exclude = r'{}|{}|{}|{}|{}|{}'.format(
- '[ABCD]\.', # A. B. C. D.
- '[((][))]', # ()
- '^[((]*[\d]+[))]', # (1)
- # '[((]*[a-zA-Z]{2,}[))]', # (km), (kg)
- '[①②③④⑤⑥⑦⑧⑨⑩]', # ①②③④⑤⑥⑦⑧⑨⑩
- '[\u4e00-\u9fa5][,;:。,;:.]', # 中.
- '[\u4e00-\u9fa5][\d]+[\u4e00-\u9fa5]') # 中123中
- for index, word_res in enumerate(word_result_list):
- words = word_res['words'].replace(' ', '').replace('兀', 'π') # 去除空格,baidu_api bug
- abcd_words_m = re.finditer(exclude, words)
- abcd_index_list = [(m.group(), m.span()) for m in abcd_words_m if m]
- words_tmp_zh = copy.copy(words)
- for ele in abcd_index_list:
- words_tmp_zh = generate_char(words_tmp_zh, ele[1], zh=True)
- formula_words_m = re.finditer(r'[^\u4e00-\u9fa5_"“”]+', words_tmp_zh)
- formula_index_list = [(m.group(), m.span()) for m in formula_words_m if m]
- formula_list = get_coordinates(word_res, formula_index_list)
- formula_coordinates_dict_list = formula_coordinates_dict_list + formula_list
- words_tmp_formula = copy.copy(words)
- for ele in abcd_index_list:
- words_tmp_formula = generate_char(words_tmp_formula, ele[1], zh=False)
- zh_words_m = re.finditer(r'[\u4e00-\u9fa5_"“”]+', words_tmp_formula)
- zh_index_list = [(m.group(), m.span()) for m in zh_words_m if m]
- zh_list = get_coordinates(word_res, zh_index_list + abcd_index_list)
- zh_coordinates_dict_list = zh_coordinates_dict_list + zh_list
- one_zh_char_m = re.match(r'[\u4e00-\u9fa5]+', words)
- if one_zh_char_m:
- index = one_zh_char_m.span()[0]
- zh_char_height_list.append(word_res['chars'][index]['location']['height'])
- zh_char_width_list.append(word_res['chars'][index]['location']['width'])
- if len(zh_char_width_list) > 0 and len(zh_char_height_list) > 0:
- zh_char_height = np.mean(zh_char_height_list)
- zh_char_width = np.mean(zh_char_width_list)
- formula_coordinates_list = [ele['coordinates'] for ele in formula_coordinates_dict_list]
- temp_img = img.copy()
- for ele in formula_coordinates_list:
- cv2.rectangle(temp_img, (int(ele[0]), int(ele[1])), (int(ele[2]), int(ele[3])), (0, 255, 0), 1)
- save_path0 = save_path.replace('.jpg', '_@_{:02d}.jpg'.format(1))
- utils.write_single_img(temp_img, save_path0)
- # 合并公式
- formula_combine_list = combine(img, save_path, formula_coordinates_list, zh_char_height, zh_char_width, 1) # 欧式距离
- formula_combine_dict_list = []
- for ele in formula_combine_list:
- middle = (ele[0] + int((ele[2] - ele[0]) // 2), ele[1] + int((ele[3] - ele[1]) // 2))
- ocr_region = utils.crop_region_direct(img, ele)
- y, x = ocr_region.shape[0], ocr_region.shape[1]
- if min(y, x) <= 50:
- ocr_region = utils.resize_by_percent(ocr_region, 1.50) # 放大若干倍
- # cv2.imshow('region', ocr_region)
- # if cv2.waitKey(0) == 27:
- # cv2.destroyAllWindows()
- try:
- mathpix_raw_chars, latex_confidence = mathpix_ocr.mathpix_api(ocr_region) # 识别公式
- render_mathpix_chars = '<img src="http://latex.codecogs.com/png.latex?{}" />'.format(mathpix_raw_chars)
- if latex_confidence < 0.2 or mathpix_raw_chars == '' or len(mathpix_raw_chars) == 1:
- for item in formula_coordinates_dict_list:
- if ele == item['coordinates']:
- mathpix_raw_chars = item['chars']
- render_mathpix_chars = '<img src="http://latex.codecogs.com/png.latex?{}" />' \
- .format(item['chars'])
- break
- except Exception:
- render_mathpix_chars = 'formula'
- mathpix_raw_chars = 'formula'
- for item in formula_coordinates_dict_list:
- if ele == item['coordinates']:
- mathpix_raw_chars = item['chars']
- render_mathpix_chars = '<img src="http://latex.codecogs.com/png.latex?{}" />' \
- .format(item['chars'])
- break
- print(render_mathpix_chars)
- tmp_dict = {'chars': render_mathpix_chars, 'middle': middle, 'coordinates': ele, 'raw_chars': mathpix_raw_chars}
- formula_combine_dict_list.append(tmp_dict)
- # res_dict = {'formula': formula_combine_list, 'zh_chars': zh_coordinates_dict_list}
- all_dict_list = zh_coordinates_dict_list + formula_combine_dict_list
- all_dict_list = sorted(all_dict_list, key=lambda k: k.get('middle')[1])
- # 相邻y做差
- former = np.array([ele['middle'][1] for ele in all_dict_list[:-1]])
- rear = np.array([ele['middle'][1] for ele in all_dict_list[1:]])
- dif = rear - former
- split_x_index = [index for index, ele in enumerate(dif) if ele >= zh_char_height] # y轴排序
- # 对整体图像大小进行resize
- scale = 1
- h, w = img.shape[0], img.shape[1]
- if w > 1000:
- scale = float(1000 / w)
- elif h < 100:
- scale = float(100 / h)
- img_resize = utils.resize_by_percent(img, scale)
- utils.write_single_img(img_resize, save_path)
- if not split_x_index:
- all_dict_list = sorted(all_dict_list, key=lambda k: k.get('middle')[0]) # x轴排序
- lines = [ele['chars'] for ele in all_dict_list]
- raw_lines = [ele['raw_chars'] for ele in all_dict_list]
- for ele in all_dict_list:
- bbox = [box * scale for box in ele['coordinates']]
- cv2.rectangle(img_resize, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 3)
- utils.write_single_img(img_resize, save_path)
- return lines, raw_lines, h
- else:
- res_list = []
- split_x_index = [ele + 1 for ele in split_x_index] # 索引值扩大
- split_x_index.insert(0, 0)
- split_x_index.insert(-1, len(all_dict_list))
- split_x_index = sorted(list(set(split_x_index)))
- for i, split in enumerate(split_x_index[1:]):
- one_line = all_dict_list[split_x_index[i]:split_x_index[i + 1]]
- one_line = sorted(one_line, key=lambda k: k.get('middle')[0]) # x轴排序
- res_list.append(one_line)
- lines = []
- raw_lines = []
- for ele in res_list:
- line_chars = ''
- raw_lines_chars = ''
- for ele1 in ele:
- chars = ele1['chars']
- raw_chars = ele1['raw_chars']
- line_chars = line_chars + chars
- raw_lines_chars = raw_lines_chars + raw_chars
- bbox = [box * scale for box in ele1['coordinates']]
- cv2.rectangle(img_resize, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 1)
- lines.append(line_chars + '\n')
- raw_lines.append(raw_lines_chars + '\n')
- utils.write_single_img(img_resize, save_path)
- # print(lines)
- return lines, raw_lines, h
- def combine(img, save_path, formula_coordinates_list, zh_char_height, zh_char_width, draw_index):
- img_draw = img.copy()
- formula_coordinates_list = sorted(formula_coordinates_list, key=lambda k: k[0])
- formula_coordinates_list = sorted(formula_coordinates_list, key=lambda k: k[1]) # 先x轴,再y轴排序
- recursion_flag = False
- del_list = []
- temp_list = formula_coordinates_list.copy()
- for i, outer in enumerate(temp_list): # xmin, ymin, xmax, ymax
- for j, inner in enumerate(temp_list): # xmin, ymin, xmax, ymax
- if not i == j:
- min_distance, flag = get_min_distance(outer, inner)
- combine_coordinate = ()
- if flag == 'i':
- recursion_flag = True
- combine_coordinate = (min(outer[0], inner[0]), min(outer[1], inner[1]),
- max(outer[2], inner[2]), max(outer[3], inner[3]))
- elif flag == 'h' and min_distance <= 1:
- recursion_flag = True
- combine_coordinate = (min(outer[0], inner[0]), min(outer[1], inner[1]),
- max(outer[2], inner[2]), max(outer[3], inner[3]))
- elif flag == 'w' and min_distance <= zh_char_width*2//3:
- recursion_flag = True
- combine_coordinate = (min(outer[0], inner[0]), min(outer[1], inner[1]),
- max(outer[2], inner[2]), max(outer[3], inner[3]))
- elif flag == 'c' and min_distance <= 1:
- recursion_flag = True
- combine_coordinate = (min(outer[0], inner[0]), min(outer[1], inner[1]),
- max(outer[2], inner[2]), max(outer[3], inner[3]))
- if combine_coordinate:
- if not combine_coordinate == outer and not combine_coordinate == inner: # 避免全包围的情况
- del_list.append(outer)
- del_list.append(inner)
- if combine_coordinate == outer:
- del_list.append(inner)
- if combine_coordinate == inner:
- del_list.append(outer)
- formula_coordinates_list.append(combine_coordinate)
- res = list(set(formula_coordinates_list) - set(del_list))
- if recursion_flag:
- draw_index = draw_index + 1
- for ele in res:
- cv2.rectangle(img_draw, (int(ele[0]), int(ele[1])), (int(ele[2]), int(ele[3])), (0, 255, 0), 1)
- save_path_temp = save_path.replace('.jpg', '_@_{:02d}.jpg'.format(draw_index))
- utils.write_single_img(img_draw, save_path_temp)
- return combine(img, save_path, res, zh_char_height, zh_char_width, draw_index)
- else:
- for ele in res:
- cv2.rectangle(img_draw, (int(ele[0]), int(ele[1])), (int(ele[2]), int(ele[3])), (0, 255, 0), 1)
- save_path_temp = save_path.replace('.jpg', '_@_final.jpg')
- utils.write_single_img(img_draw, save_path_temp)
- return res
- def get_min_distance_square(coordinate1, coordinate2): # 顶点间欧式距离最小值的平方和
- all_points1 = [(x, y) for x in [coordinate1[0], coordinate1[2]] for y in [coordinate1[1], coordinate1[3]]]
- all_points2 = [(x, y) for x in [coordinate2[0], coordinate2[2]] for y in [coordinate2[1], coordinate2[3]]]
- distance_list = []
- for index1, point1 in enumerate(all_points1):
- for index2, point2 in enumerate(all_points2):
- distance = (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
- distance_list.append(distance)
- min_distance = min(distance_list)
- return min_distance
- def get_min_distance(coordinate1, coordinate2): # 欧式距离最小值
- def dist(point1, point2):
- distance = (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2
- return math.sqrt(distance)
- (x1, y1, x1b, y1b) = coordinate1
- (x2, y2, x2b, y2b) = coordinate2
- left = x2b < x1 # 2在1的坐标左边
- right = x1b < x2 # 2在1的坐标右边
- bottom = y2b < y1 # 2在1的坐标下边
- top = y1b < y2 # 2在1的坐标上边
- if top and left:
- return dist((x1, y1b), (x2b, y2)), 'c'
- elif left and bottom:
- return dist((x1, y1), (x2b, y2b)), 'c'
- elif bottom and right:
- return dist((x1b, y1), (x2, y2b)), 'c'
- elif right and top:
- return dist((x1b, y1b), (x2, y2)), 'c'
- elif left:
- return x1 - x2b, 'w'
- elif right:
- return x2 - x1b, 'w'
- elif bottom:
- return y1 - y2b, 'h'
- elif top:
- return y2 - y1b, 'h'
- else: # rectangles intersect
- return 0, 'i'
|