123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- # --------------------------------------------------------
- # Faster R-CNN
- # Copyright (c) 2015 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ross Girshick and Xinlei Chen
- # --------------------------------------------------------
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- from segment.sheet_resolve.lib.model.config import cfg
- import numpy as np
- import numpy.random as npr
- from segment.sheet_resolve.lib.utils.py_bbox import bbox_overlaps
- from segment.sheet_resolve.lib.model.bbox_transform import bbox_transform
- def anchor_target_layer(rpn_cls_score, gt_boxes, im_info, _feat_stride, all_anchors, num_anchors):
- """Same as the anchor target layer in original Fast/er RCNN """
- A = num_anchors
- total_anchors = all_anchors.shape[0]
- K = total_anchors / num_anchors
- # allow boxes to sit over the edge by a small amount
- _allowed_border = 0
- # map of shape (..., H, W)
- height, width = rpn_cls_score.shape[1:3]
- # only keep anchors inside the image
- inds_inside = np.where(
- (all_anchors[:, 0] >= -_allowed_border) &
- (all_anchors[:, 1] >= -_allowed_border) &
- (all_anchors[:, 2] < im_info[1] + _allowed_border) & # width
- (all_anchors[:, 3] < im_info[0] + _allowed_border) # height
- )[0]
- # keep only inside anchors
- anchors = all_anchors[inds_inside, :]
- # label: 1 is positive, 0 is negative, -1 is dont care
- labels = np.empty((len(inds_inside),), dtype=np.float32)
- labels.fill(-1)
- # overlaps between the anchors and the gt boxes
- # overlaps (ex, gt)
- overlaps = bbox_overlaps(
- np.ascontiguousarray(anchors, dtype=np.float),
- np.ascontiguousarray(gt_boxes, dtype=np.float))
- argmax_overlaps = overlaps.argmax(axis=1)
- max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
- gt_argmax_overlaps = overlaps.argmax(axis=0)
- gt_max_overlaps = overlaps[gt_argmax_overlaps,
- np.arange(overlaps.shape[1])]
- gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]
- if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
- # assign bg labels first so that positive labels can clobber them
- # first set the negatives
- labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
- # fg label: for each gt, anchor with highest overlap
- labels[gt_argmax_overlaps] = 1
- # fg label: above threshold IOU
- labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
- if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
- # assign bg labels last so that negative labels can clobber positives
- labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
- # subsample positive labels if we have too many
- num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
- fg_inds = np.where(labels == 1)[0]
- if len(fg_inds) > num_fg:
- disable_inds = npr.choice(
- fg_inds, size=(len(fg_inds) - num_fg), replace=False)
- labels[disable_inds] = -1
- # subsample negative labels if we have too many
- num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
- bg_inds = np.where(labels == 0)[0]
- if len(bg_inds) > num_bg:
- disable_inds = npr.choice(
- bg_inds, size=(len(bg_inds) - num_bg), replace=False)
- labels[disable_inds] = -1
- bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
- bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
- bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
- # only the positive ones have regression targets
- bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)
- bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
- if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
- # uniform weighting of examples (given non-uniform sampling)
- num_examples = np.sum(labels >= 0)
- positive_weights = np.ones((1, 4)) * 1.0 / num_examples
- negative_weights = np.ones((1, 4)) * 1.0 / num_examples
- else:
- assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
- (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
- positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
- np.sum(labels == 1))
- negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
- np.sum(labels == 0))
- bbox_outside_weights[labels == 1, :] = positive_weights
- bbox_outside_weights[labels == 0, :] = negative_weights
- # map up to original set of anchors
- labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
- bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
- bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
- bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)
- # labels
- labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
- labels = labels.reshape((1, 1, A * height, width))
- rpn_labels = labels
- # bbox_targets
- bbox_targets = bbox_targets \
- .reshape((1, height, width, A * 4))
- rpn_bbox_targets = bbox_targets
- # bbox_inside_weights
- bbox_inside_weights = bbox_inside_weights \
- .reshape((1, height, width, A * 4))
- rpn_bbox_inside_weights = bbox_inside_weights
- # bbox_outside_weights
- bbox_outside_weights = bbox_outside_weights \
- .reshape((1, height, width, A * 4))
- rpn_bbox_outside_weights = bbox_outside_weights
- return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights
- def _unmap(data, count, inds, fill=0):
- """ Unmap a subset of item (data) back to the original set of items (of
- size count) """
- if len(data.shape) == 1:
- ret = np.empty((count,), dtype=np.float32)
- ret.fill(fill)
- ret[inds] = data
- else:
- ret = np.empty((count,) + data.shape[1:], dtype=np.float32)
- ret.fill(fill)
- ret[inds, :] = data
- return ret
- def _compute_targets(ex_rois, gt_rois):
- """Compute bounding-box regression targets for an image."""
- assert ex_rois.shape[0] == gt_rois.shape[0]
- assert ex_rois.shape[1] == 4
- assert gt_rois.shape[1] == 5
- return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
|