123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A module for helper tensorflow ops."""
- import math
- import numpy as np
- import six
- import tensorflow as tf
- from segment.sheet_resolve.lib.ssd_model.core import standard_fields as fields
- from segment.sheet_resolve.lib.ssd_model.utils import shape_utils
- from segment.sheet_resolve.lib.ssd_model.utils import static_shape
- def expanded_shape(orig_shape, start_dim, num_dims):
- """Inserts multiple ones into a shape vector.
- Inserts an all-1 vector of length num_dims at position start_dim into a shape.
- Can be combined with tf.reshape to generalize tf.expand_dims.
- Args:
- orig_shape: the shape into which the all-1 vector is added (int32 vector)
- start_dim: insertion position (int scalar)
- num_dims: length of the inserted all-1 vector (int scalar)
- Returns:
- An int32 vector of length tf.size(orig_shape) + num_dims.
- """
- with tf.name_scope('ExpandedShape'):
- start_dim = tf.expand_dims(start_dim, 0) # scalar to rank-1
- before = tf.slice(orig_shape, [0], start_dim)
- add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32)
- after = tf.slice(orig_shape, start_dim, [-1])
- new_shape = tf.concat([before, add_shape, after], 0)
- return new_shape
- def normalized_to_image_coordinates(normalized_boxes, image_shape,
- parallel_iterations=32):
- """Converts a batch of boxes from normal to image coordinates.
- Args:
- normalized_boxes: a float32 tensor of shape [None, num_boxes, 4] in
- normalized coordinates.
- image_shape: a float32 tensor of shape [4] containing the image shape.
- parallel_iterations: parallelism for the map_fn op.
- Returns:
- absolute_boxes: a float32 tensor of shape [None, num_boxes, 4] containing
- the boxes in image coordinates.
- """
- x_scale = tf.cast(image_shape[2], tf.float32)
- y_scale = tf.cast(image_shape[1], tf.float32)
- def _to_absolute_coordinates(normalized_boxes):
- y_min, x_min, y_max, x_max = tf.split(
- value=normalized_boxes, num_or_size_splits=4, axis=1)
- y_min = y_scale * y_min
- y_max = y_scale * y_max
- x_min = x_scale * x_min
- x_max = x_scale * x_max
- scaled_boxes = tf.concat([y_min, x_min, y_max, x_max], 1)
- return scaled_boxes
- absolute_boxes = shape_utils.static_or_dynamic_map_fn(
- _to_absolute_coordinates,
- elems=(normalized_boxes),
- dtype=tf.float32,
- parallel_iterations=parallel_iterations,
- back_prop=True)
- return absolute_boxes
- def meshgrid(x, y):
- """Tiles the contents of x and y into a pair of grids.
- Multidimensional analog of numpy.meshgrid, giving the same behavior if x and y
- are vectors. Generally, this will give:
- xgrid(i1, ..., i_m, j_1, ..., j_n) = x(j_1, ..., j_n)
- ygrid(i1, ..., i_m, j_1, ..., j_n) = y(i_1, ..., i_m)
- Keep in mind that the order of the arguments and outputs is reverse relative
- to the order of the indices they go into, done for compatibility with numpy.
- The output tensors have the same shapes. Specifically:
- xgrid.get_shape() = y.get_shape().concatenate(x.get_shape())
- ygrid.get_shape() = y.get_shape().concatenate(x.get_shape())
- Args:
- x: A tensor of arbitrary shape and rank. xgrid will contain these values
- varying in its last dimensions.
- y: A tensor of arbitrary shape and rank. ygrid will contain these values
- varying in its first dimensions.
- Returns:
- A tuple of tensors (xgrid, ygrid).
- """
- with tf.name_scope('Meshgrid'):
- x = tf.convert_to_tensor(x)
- y = tf.convert_to_tensor(y)
- x_exp_shape = expanded_shape(tf.shape(x), 0, tf.rank(y))
- y_exp_shape = expanded_shape(tf.shape(y), tf.rank(y), tf.rank(x))
- xgrid = tf.tile(tf.reshape(x, x_exp_shape), y_exp_shape)
- ygrid = tf.tile(tf.reshape(y, y_exp_shape), x_exp_shape)
- new_shape = y.get_shape().concatenate(x.get_shape())
- xgrid.set_shape(new_shape)
- ygrid.set_shape(new_shape)
- return xgrid, ygrid
- def fixed_padding(inputs, kernel_size, rate=1):
- """Pads the input along the spatial dimensions independently of input size.
- Args:
- inputs: A tensor of size [batch, height_in, width_in, channels].
- kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
- Should be a positive integer.
- rate: An integer, rate for atrous convolution.
- Returns:
- output: A tensor of size [batch, height_out, width_out, channels] with the
- input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
- """
- kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
- pad_total = kernel_size_effective - 1
- pad_beg = pad_total // 2
- pad_end = pad_total - pad_beg
- padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
- [pad_beg, pad_end], [0, 0]])
- return padded_inputs
- def pad_to_multiple(tensor, multiple):
- """Returns the tensor zero padded to the specified multiple.
- Appends 0s to the end of the first and second dimension (height and width) of
- the tensor until both dimensions are a multiple of the input argument
- 'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input
- multiple of 4, PadToMultiple will append 0s so that the resulting tensor will
- be of shape [1, 4, 8, 1].
- Args:
- tensor: rank 4 float32 tensor, where
- tensor -> [batch_size, height, width, channels].
- multiple: the multiple to pad to.
- Returns:
- padded_tensor: the tensor zero padded to the specified multiple.
- """
- if multiple == 1:
- return tensor
- tensor_shape = tensor.get_shape()
- batch_size = static_shape.get_batch_size(tensor_shape)
- tensor_height = static_shape.get_height(tensor_shape)
- tensor_width = static_shape.get_width(tensor_shape)
- tensor_depth = static_shape.get_depth(tensor_shape)
- if batch_size is None:
- batch_size = tf.shape(tensor)[0]
- if tensor_height is None:
- tensor_height = tf.shape(tensor)[1]
- padded_tensor_height = tf.to_int32(
- tf.ceil(tf.to_float(tensor_height) / tf.to_float(multiple))) * multiple
- else:
- padded_tensor_height = int(
- math.ceil(float(tensor_height) / multiple) * multiple)
- if tensor_width is None:
- tensor_width = tf.shape(tensor)[2]
- padded_tensor_width = tf.to_int32(
- tf.ceil(tf.to_float(tensor_width) / tf.to_float(multiple))) * multiple
- else:
- padded_tensor_width = int(
- math.ceil(float(tensor_width) / multiple) * multiple)
- if tensor_depth is None:
- tensor_depth = tf.shape(tensor)[3]
- # Use tf.concat instead of tf.pad to preserve static shape
- if padded_tensor_height != tensor_height:
- height_pad = tf.zeros([
- batch_size, padded_tensor_height - tensor_height, tensor_width,
- tensor_depth
- ])
- tensor = tf.concat([tensor, height_pad], 1)
- if padded_tensor_width != tensor_width:
- width_pad = tf.zeros([
- batch_size, padded_tensor_height, padded_tensor_width - tensor_width,
- tensor_depth
- ])
- tensor = tf.concat([tensor, width_pad], 2)
- return tensor
- def padded_one_hot_encoding(indices, depth, left_pad):
- """Returns a zero padded one-hot tensor.
- This function converts a sparse representation of indices (e.g., [4]) to a
- zero padded one-hot representation (e.g., [0, 0, 0, 0, 1] with depth = 4 and
- left_pad = 1). If `indices` is empty, the result will simply be a tensor of
- shape (0, depth + left_pad). If depth = 0, then this function just returns
- `None`.
- Args:
- indices: an integer tensor of shape [num_indices].
- depth: depth for the one-hot tensor (integer).
- left_pad: number of zeros to left pad the one-hot tensor with (integer).
- Returns:
- padded_onehot: a tensor with shape (num_indices, depth + left_pad). Returns
- `None` if the depth is zero.
- Raises:
- ValueError: if `indices` does not have rank 1 or if `left_pad` or `depth are
- either negative or non-integers.
- TODO(rathodv): add runtime checks for depth and indices.
- """
- if depth < 0 or not isinstance(depth, six.integer_types):
- raise ValueError('`depth` must be a non-negative integer.')
- if left_pad < 0 or not isinstance(left_pad, six.integer_types):
- raise ValueError('`left_pad` must be a non-negative integer.')
- if depth == 0:
- return None
- rank = len(indices.get_shape().as_list())
- if rank != 1:
- raise ValueError('`indices` must have rank 1, but has rank=%s' % rank)
- def one_hot_and_pad():
- one_hot = tf.cast(tf.one_hot(tf.cast(indices, tf.int64), depth,
- on_value=1, off_value=0), tf.float32)
- return tf.pad(one_hot, [[0, 0], [left_pad, 0]], mode='CONSTANT')
- result = tf.cond(tf.greater(tf.size(indices), 0), one_hot_and_pad,
- lambda: tf.zeros((depth + left_pad, 0)))
- return tf.reshape(result, [-1, depth + left_pad])
- def dense_to_sparse_boxes(dense_locations, dense_num_boxes, num_classes):
- """Converts bounding boxes from dense to sparse form.
- Args:
- dense_locations: a [max_num_boxes, 4] tensor in which only the first k rows
- are valid bounding box location coordinates, where k is the sum of
- elements in dense_num_boxes.
- dense_num_boxes: a [max_num_classes] tensor indicating the counts of
- various bounding box classes e.g. [1, 0, 0, 2] means that the first
- bounding box is of class 0 and the second and third bounding boxes are
- of class 3. The sum of elements in this tensor is the number of valid
- bounding boxes.
- num_classes: number of classes
- Returns:
- box_locations: a [num_boxes, 4] tensor containing only valid bounding
- boxes (i.e. the first num_boxes rows of dense_locations)
- box_classes: a [num_boxes] tensor containing the classes of each bounding
- box (e.g. dense_num_boxes = [1, 0, 0, 2] => box_classes = [0, 3, 3]
- """
- num_valid_boxes = tf.reduce_sum(dense_num_boxes)
- box_locations = tf.slice(dense_locations,
- tf.constant([0, 0]), tf.stack([num_valid_boxes, 4]))
- tiled_classes = [tf.tile([i], tf.expand_dims(dense_num_boxes[i], 0))
- for i in range(num_classes)]
- box_classes = tf.concat(tiled_classes, 0)
- box_locations.set_shape([None, 4])
- return box_locations, box_classes
- def indices_to_dense_vector(indices,
- size,
- indices_value=1.,
- default_value=0,
- dtype=tf.float32):
- """Creates dense vector with indices set to specific value and rest to zeros.
- This function exists because it is unclear if it is safe to use
- tf.sparse_to_dense(indices, [size], 1, validate_indices=False)
- with indices which are not ordered.
- This function accepts a dynamic size (e.g. tf.shape(tensor)[0])
- Args:
- indices: 1d Tensor with integer indices which are to be set to
- indices_values.
- size: scalar with size (integer) of output Tensor.
- indices_value: values of elements specified by indices in the output vector
- default_value: values of other elements in the output vector.
- dtype: data type.
- Returns:
- dense 1D Tensor of shape [size] with indices set to indices_values and the
- rest set to default_value.
- """
- size = tf.to_int32(size)
- zeros = tf.ones([size], dtype=dtype) * default_value
- values = tf.ones_like(indices, dtype=dtype) * indices_value
- return tf.dynamic_stitch([tf.range(size), tf.to_int32(indices)],
- [zeros, values])
- def reduce_sum_trailing_dimensions(tensor, ndims):
- """Computes sum across all dimensions following first `ndims` dimensions."""
- return tf.reduce_sum(tensor, axis=tuple(range(ndims, tensor.shape.ndims)))
- def retain_groundtruth(tensor_dict, valid_indices):
- """Retains groundtruth by valid indices.
- Args:
- tensor_dict: a dictionary of following groundtruth tensors -
- fields.InputDataFields.groundtruth_boxes
- fields.InputDataFields.groundtruth_classes
- fields.InputDataFields.groundtruth_keypoints
- fields.InputDataFields.groundtruth_instance_masks
- fields.InputDataFields.groundtruth_is_crowd
- fields.InputDataFields.groundtruth_area
- fields.InputDataFields.groundtruth_label_types
- fields.InputDataFields.groundtruth_difficult
- valid_indices: a tensor with valid indices for the box-level groundtruth.
- Returns:
- a dictionary of tensors containing only the groundtruth for valid_indices.
- Raises:
- ValueError: If the shape of valid_indices is invalid.
- ValueError: field fields.InputDataFields.groundtruth_boxes is
- not present in tensor_dict.
- """
- input_shape = valid_indices.get_shape().as_list()
- if not (len(input_shape) == 1 or
- (len(input_shape) == 2 and input_shape[1] == 1)):
- raise ValueError('The shape of valid_indices is invalid.')
- valid_indices = tf.reshape(valid_indices, [-1])
- valid_dict = {}
- if fields.InputDataFields.groundtruth_boxes in tensor_dict:
- # Prevents reshape failure when num_boxes is 0.
- num_boxes = tf.maximum(tf.shape(
- tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1)
- for key in tensor_dict:
- if key in [fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_keypoints,
- fields.InputDataFields.groundtruth_instance_masks]:
- valid_dict[key] = tf.gather(tensor_dict[key], valid_indices)
- # Input decoder returns empty tensor when these fields are not provided.
- # Needs to reshape into [num_boxes, -1] for tf.gather() to work.
- elif key in [fields.InputDataFields.groundtruth_is_crowd,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_difficult,
- fields.InputDataFields.groundtruth_label_types]:
- valid_dict[key] = tf.reshape(
- tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]),
- valid_indices), [-1])
- # Fields that are not associated with boxes.
- else:
- valid_dict[key] = tensor_dict[key]
- else:
- raise ValueError('%s not present in input tensor dict.' % (
- fields.InputDataFields.groundtruth_boxes))
- return valid_dict
- def retain_groundtruth_with_positive_classes(tensor_dict):
- """Retains only groundtruth with positive class ids.
- Args:
- tensor_dict: a dictionary of following groundtruth tensors -
- fields.InputDataFields.groundtruth_boxes
- fields.InputDataFields.groundtruth_classes
- fields.InputDataFields.groundtruth_keypoints
- fields.InputDataFields.groundtruth_instance_masks
- fields.InputDataFields.groundtruth_is_crowd
- fields.InputDataFields.groundtruth_area
- fields.InputDataFields.groundtruth_label_types
- fields.InputDataFields.groundtruth_difficult
- Returns:
- a dictionary of tensors containing only the groundtruth with positive
- classes.
- Raises:
- ValueError: If groundtruth_classes tensor is not in tensor_dict.
- """
- if fields.InputDataFields.groundtruth_classes not in tensor_dict:
- raise ValueError('`groundtruth classes` not in tensor_dict.')
- keep_indices = tf.where(tf.greater(
- tensor_dict[fields.InputDataFields.groundtruth_classes], 0))
- return retain_groundtruth(tensor_dict, keep_indices)
- def replace_nan_groundtruth_label_scores_with_ones(label_scores):
- """Replaces nan label scores with 1.0.
- Args:
- label_scores: a tensor containing object annoation label scores.
- Returns:
- a tensor where NaN label scores have been replaced by ones.
- """
- return tf.where(
- tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores)
- def filter_groundtruth_with_crowd_boxes(tensor_dict):
- """Filters out groundtruth with boxes corresponding to crowd.
- Args:
- tensor_dict: a dictionary of following groundtruth tensors -
- fields.InputDataFields.groundtruth_boxes
- fields.InputDataFields.groundtruth_classes
- fields.InputDataFields.groundtruth_keypoints
- fields.InputDataFields.groundtruth_instance_masks
- fields.InputDataFields.groundtruth_is_crowd
- fields.InputDataFields.groundtruth_area
- fields.InputDataFields.groundtruth_label_types
- Returns:
- a dictionary of tensors containing only the groundtruth that have bounding
- boxes.
- """
- if fields.InputDataFields.groundtruth_is_crowd in tensor_dict:
- is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd]
- is_not_crowd = tf.logical_not(is_crowd)
- is_not_crowd_indices = tf.where(is_not_crowd)
- tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices)
- return tensor_dict
- def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
- """Filters out groundtruth with no bounding boxes.
- Args:
- tensor_dict: a dictionary of following groundtruth tensors -
- fields.InputDataFields.groundtruth_boxes
- fields.InputDataFields.groundtruth_classes
- fields.InputDataFields.groundtruth_keypoints
- fields.InputDataFields.groundtruth_instance_masks
- fields.InputDataFields.groundtruth_is_crowd
- fields.InputDataFields.groundtruth_area
- fields.InputDataFields.groundtruth_label_types
- Returns:
- a dictionary of tensors containing only the groundtruth that have bounding
- boxes.
- """
- groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
- nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
- tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
- valid_indicator_vector = tf.logical_not(nan_indicator_vector)
- valid_indices = tf.where(valid_indicator_vector)
- return retain_groundtruth(tensor_dict, valid_indices)
- def normalize_to_target(inputs,
- target_norm_value,
- dim,
- epsilon=1e-7,
- trainable=True,
- scope='NormalizeToTarget',
- summarize=True):
- """L2 normalizes the inputs across the specified dimension to a target norm.
- This op implements the L2 Normalization layer introduced in
- Liu, Wei, et al. "SSD: Single Shot MultiBox Detector."
- and Liu, Wei, Andrew Rabinovich, and Alexander C. Berg.
- "Parsenet: Looking wider to see better." and is useful for bringing
- activations from multiple layers in a convnet to a standard scale.
- Note that the rank of `inputs` must be known and the dimension to which
- normalization is to be applied should be statically defined.
- TODO(jonathanhuang): Add option to scale by L2 norm of the entire input.
- Args:
- inputs: A `Tensor` of arbitrary size.
- target_norm_value: A float value that specifies an initial target norm or
- a list of floats (whose length must be equal to the depth along the
- dimension to be normalized) specifying a per-dimension multiplier
- after normalization.
- dim: The dimension along which the input is normalized.
- epsilon: A small value to add to the inputs to avoid dividing by zero.
- trainable: Whether the norm is trainable or not
- scope: Optional scope for variable_scope.
- summarize: Whether or not to add a tensorflow summary for the op.
- Returns:
- The input tensor normalized to the specified target norm.
- Raises:
- ValueError: If dim is smaller than the number of dimensions in 'inputs'.
- ValueError: If target_norm_value is not a float or a list of floats with
- length equal to the depth along the dimension to be normalized.
- """
- with tf.variable_scope(scope, 'NormalizeToTarget', [inputs]):
- if not inputs.get_shape():
- raise ValueError('The input rank must be known.')
- input_shape = inputs.get_shape().as_list()
- input_rank = len(input_shape)
- if dim < 0 or dim >= input_rank:
- raise ValueError(
- 'dim must be non-negative but smaller than the input rank.')
- if not input_shape[dim]:
- raise ValueError('input shape should be statically defined along '
- 'the specified dimension.')
- depth = input_shape[dim]
- if not (isinstance(target_norm_value, float) or
- (isinstance(target_norm_value, list) and
- len(target_norm_value) == depth) and
- all([isinstance(val, float) for val in target_norm_value])):
- raise ValueError('target_norm_value must be a float or a list of floats '
- 'with length equal to the depth along the dimension to '
- 'be normalized.')
- if isinstance(target_norm_value, float):
- initial_norm = depth * [target_norm_value]
- else:
- initial_norm = target_norm_value
- target_norm = tf.contrib.framework.model_variable(
- name='weights', dtype=tf.float32,
- initializer=tf.constant(initial_norm, dtype=tf.float32),
- trainable=trainable)
- if summarize:
- mean = tf.reduce_mean(target_norm)
- mean = tf.Print(mean, ['NormalizeToTarget:', mean])
- tf.summary.scalar(tf.get_variable_scope().name, mean)
- lengths = epsilon + tf.sqrt(tf.reduce_sum(tf.square(inputs), dim, True))
- mult_shape = input_rank*[1]
- mult_shape[dim] = depth
- return tf.reshape(target_norm, mult_shape) * tf.truediv(inputs, lengths)
- def batch_position_sensitive_crop_regions(images,
- boxes,
- crop_size,
- num_spatial_bins,
- global_pool,
- parallel_iterations=64):
- """Position sensitive crop with batches of images and boxes.
- This op is exactly like `position_sensitive_crop_regions` below but operates
- on batches of images and boxes. See `position_sensitive_crop_regions` function
- below for the operation applied per batch element.
- Args:
- images: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
- `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
- A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
- Both `image_height` and `image_width` need to be positive.
- boxes: A `Tensor` of type `float32`.
- A 3-D tensor of shape `[batch, num_boxes, 4]`. Each box is specified in
- normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
- of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
- as the `[0, 1]` interval of normalized image height is mapped to
- `[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
- in which case the sampled crop is an up-down flipped version of the
- original image. The width dimension is treated similarly.
- crop_size: See `position_sensitive_crop_regions` below.
- num_spatial_bins: See `position_sensitive_crop_regions` below.
- global_pool: See `position_sensitive_crop_regions` below.
- parallel_iterations: Number of batch items to process in parallel.
- Returns:
- """
- def _position_sensitive_crop_fn(inputs):
- images, boxes = inputs
- return position_sensitive_crop_regions(
- images,
- boxes,
- crop_size=crop_size,
- num_spatial_bins=num_spatial_bins,
- global_pool=global_pool)
- return shape_utils.static_or_dynamic_map_fn(
- _position_sensitive_crop_fn,
- elems=[images, boxes],
- dtype=tf.float32,
- parallel_iterations=parallel_iterations)
- def position_sensitive_crop_regions(image,
- boxes,
- crop_size,
- num_spatial_bins,
- global_pool):
- """Position-sensitive crop and pool rectangular regions from a feature grid.
- The output crops are split into `spatial_bins_y` vertical bins
- and `spatial_bins_x` horizontal bins. For each intersection of a vertical
- and a horizontal bin the output values are gathered by performing
- `tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of
- channels of the image. This reduces `depth` by a factor of
- `(spatial_bins_y * spatial_bins_x)`.
- When global_pool is True, this function implements a differentiable version
- of position-sensitive RoI pooling used in
- [R-FCN detection system](https://arxiv.org/abs/1605.06409).
- When global_pool is False, this function implements a differentiable version
- of position-sensitive assembling operation used in
- [instance FCN](https://arxiv.org/abs/1603.08678).
- Args:
- image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
- `int16`, `int32`, `int64`, `half`, `float32`, `float64`.
- A 3-D tensor of shape `[image_height, image_width, depth]`.
- Both `image_height` and `image_width` need to be positive.
- boxes: A `Tensor` of type `float32`.
- A 2-D tensor of shape `[num_boxes, 4]`. Each box is specified in
- normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value
- of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so
- as the `[0, 1]` interval of normalized image height is mapped to
- `[0, image_height - 1] in image height coordinates. We do allow y1 > y2,
- in which case the sampled crop is an up-down flipped version of the
- original image. The width dimension is treated similarly.
- crop_size: A list of two integers `[crop_height, crop_width]`. All
- cropped image patches are resized to this size. The aspect ratio of the
- image content is not preserved. Both `crop_height` and `crop_width` need
- to be positive.
- num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`.
- Represents the number of position-sensitive bins in y and x directions.
- Both values should be >= 1. `crop_height` should be divisible by
- `spatial_bins_y`, and similarly for width.
- The number of image channels should be divisible by
- (spatial_bins_y * spatial_bins_x).
- Suggested value from R-FCN paper: [3, 3].
- global_pool: A boolean variable.
- If True, we perform average global pooling on the features assembled from
- the position-sensitive score maps.
- If False, we keep the position-pooled features without global pooling
- over the spatial coordinates.
- Note that using global_pool=True is equivalent to but more efficient than
- running the function with global_pool=False and then performing global
- average pooling.
- Returns:
- position_sensitive_features: A 4-D tensor of shape
- `[num_boxes, K, K, crop_channels]`,
- where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`,
- where K = 1 when global_pool is True (Average-pooled cropped regions),
- and K = crop_size when global_pool is False.
- Raises:
- ValueError: Raised in four situations:
- `num_spatial_bins` is not >= 1;
- `num_spatial_bins` does not divide `crop_size`;
- `(spatial_bins_y*spatial_bins_x)` does not divide `depth`;
- `bin_crop_size` is not square when global_pool=False due to the
- constraint in function space_to_depth.
- """
- total_bins = 1
- bin_crop_size = []
- for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size):
- if num_bins < 1:
- raise ValueError('num_spatial_bins should be >= 1')
- if crop_dim % num_bins != 0:
- raise ValueError('crop_size should be divisible by num_spatial_bins')
- total_bins *= num_bins
- bin_crop_size.append(crop_dim // num_bins)
- if not global_pool and bin_crop_size[0] != bin_crop_size[1]:
- raise ValueError('Only support square bin crop size for now.')
- ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1)
- spatial_bins_y, spatial_bins_x = num_spatial_bins
- # Split each box into spatial_bins_y * spatial_bins_x bins.
- position_sensitive_boxes = []
- for bin_y in range(spatial_bins_y):
- step_y = (ymax - ymin) / spatial_bins_y
- for bin_x in range(spatial_bins_x):
- step_x = (xmax - xmin) / spatial_bins_x
- box_coordinates = [ymin + bin_y * step_y,
- xmin + bin_x * step_x,
- ymin + (bin_y + 1) * step_y,
- xmin + (bin_x + 1) * step_x,
- ]
- position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1))
- image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=2)
- image_crops = []
- for (split, box) in zip(image_splits, position_sensitive_boxes):
- if split.shape.is_fully_defined() and box.shape.is_fully_defined():
- crop = tf.squeeze(
- matmul_crop_and_resize(
- tf.expand_dims(split, axis=0), tf.expand_dims(box, axis=0),
- bin_crop_size),
- axis=0)
- else:
- crop = tf.image.crop_and_resize(
- tf.expand_dims(split, 0), box,
- tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), bin_crop_size)
- image_crops.append(crop)
- if global_pool:
- # Average over all bins.
- position_sensitive_features = tf.add_n(image_crops) / len(image_crops)
- # Then average over spatial positions within the bins.
- position_sensitive_features = tf.reduce_mean(
- position_sensitive_features, [1, 2], keep_dims=True)
- else:
- # Reorder height/width to depth channel.
- block_size = bin_crop_size[0]
- if block_size >= 2:
- image_crops = [tf.space_to_depth(
- crop, block_size=block_size) for crop in image_crops]
- # Pack image_crops so that first dimension is for position-senstive boxes.
- position_sensitive_features = tf.stack(image_crops, axis=0)
- # Unroll the position-sensitive boxes to spatial positions.
- position_sensitive_features = tf.squeeze(
- tf.batch_to_space_nd(position_sensitive_features,
- block_shape=[1] + num_spatial_bins,
- crops=tf.zeros((3, 2), dtype=tf.int32)),
- squeeze_dims=[0])
- # Reorder back the depth channel.
- if block_size >= 2:
- position_sensitive_features = tf.depth_to_space(
- position_sensitive_features, block_size=block_size)
- return position_sensitive_features
- def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
- image_width):
- """Transforms the box masks back to full image masks.
- Embeds masks in bounding boxes of larger masks whose shapes correspond to
- image shape.
- Args:
- box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width].
- boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
- corners. Row i contains [ymin, xmin, ymax, xmax] of the box
- corresponding to mask i. Note that the box corners are in
- normalized coordinates.
- image_height: Image height. The output mask will have the same height as
- the image height.
- image_width: Image width. The output mask will have the same width as the
- image width.
- Returns:
- A tf.float32 tensor of size [num_masks, image_height, image_width].
- """
- # TODO(rathodv): Make this a public function.
- def reframe_box_masks_to_image_masks_default():
- """The default function when there are more than 0 box masks."""
- def transform_boxes_relative_to_boxes(boxes, reference_boxes):
- boxes = tf.reshape(boxes, [-1, 2, 2])
- min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1)
- max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1)
- transformed_boxes = (boxes - min_corner) / (max_corner - min_corner)
- return tf.reshape(transformed_boxes, [-1, 4])
- box_masks_expanded = tf.expand_dims(box_masks, axis=3)
- num_boxes = tf.shape(box_masks_expanded)[0]
- unit_boxes = tf.concat(
- [tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1)
- reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes)
- return tf.image.crop_and_resize(
- image=box_masks_expanded,
- boxes=reverse_boxes,
- box_ind=tf.range(num_boxes),
- crop_size=[image_height, image_width],
- extrapolation_value=0.0)
- image_masks = tf.cond(
- tf.shape(box_masks)[0] > 0,
- reframe_box_masks_to_image_masks_default,
- lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32))
- return tf.squeeze(image_masks, axis=3)
- def merge_boxes_with_multiple_labels(boxes,
- classes,
- confidences,
- num_classes,
- quantization_bins=10000):
- """Merges boxes with same coordinates and returns K-hot encoded classes.
- Args:
- boxes: A tf.float32 tensor with shape [N, 4] holding N boxes. Only
- normalized coordinates are allowed.
- classes: A tf.int32 tensor with shape [N] holding class indices.
- The class index starts at 0.
- confidences: A tf.float32 tensor with shape [N] holding class confidences.
- num_classes: total number of classes to use for K-hot encoding.
- quantization_bins: the number of bins used to quantize the box coordinate.
- Returns:
- merged_boxes: A tf.float32 tensor with shape [N', 4] holding boxes,
- where N' <= N.
- class_encodings: A tf.int32 tensor with shape [N', num_classes] holding
- K-hot encodings for the merged boxes.
- confidence_encodings: A tf.float32 tensor with shape [N', num_classes]
- holding encodings of confidences for the merged boxes.
- merged_box_indices: A tf.int32 tensor with shape [N'] holding original
- indices of the boxes.
- """
- boxes_shape = tf.shape(boxes)
- classes_shape = tf.shape(classes)
- confidences_shape = tf.shape(confidences)
- box_class_shape_assert = shape_utils.assert_shape_equal_along_first_dimension(
- boxes_shape, classes_shape)
- box_confidence_shape_assert = (
- shape_utils.assert_shape_equal_along_first_dimension(
- boxes_shape, confidences_shape))
- box_dimension_assert = tf.assert_equal(boxes_shape[1], 4)
- box_normalized_assert = shape_utils.assert_box_normalized(boxes)
- with tf.control_dependencies(
- [box_class_shape_assert, box_confidence_shape_assert,
- box_dimension_assert, box_normalized_assert]):
- quantized_boxes = tf.to_int64(boxes * (quantization_bins - 1))
- ymin, xmin, ymax, xmax = tf.unstack(quantized_boxes, axis=1)
- hashcodes = (
- ymin +
- xmin * quantization_bins +
- ymax * quantization_bins * quantization_bins +
- xmax * quantization_bins * quantization_bins * quantization_bins)
- unique_hashcodes, unique_indices = tf.unique(hashcodes)
- num_boxes = tf.shape(boxes)[0]
- num_unique_boxes = tf.shape(unique_hashcodes)[0]
- merged_box_indices = tf.unsorted_segment_min(
- tf.range(num_boxes), unique_indices, num_unique_boxes)
- merged_boxes = tf.gather(boxes, merged_box_indices)
- def map_box_encodings(i):
- """Produces box K-hot and score encodings for each class index."""
- box_mask = tf.equal(
- unique_indices, i * tf.ones(num_boxes, dtype=tf.int32))
- box_mask = tf.reshape(box_mask, [-1])
- box_indices = tf.boolean_mask(classes, box_mask)
- box_confidences = tf.boolean_mask(confidences, box_mask)
- box_class_encodings = tf.sparse_to_dense(
- box_indices, [num_classes], 1, validate_indices=False)
- box_confidence_encodings = tf.sparse_to_dense(
- box_indices, [num_classes], box_confidences, validate_indices=False)
- return box_class_encodings, box_confidence_encodings
- class_encodings, confidence_encodings = tf.map_fn(
- map_box_encodings,
- tf.range(num_unique_boxes),
- back_prop=False,
- dtype=(tf.int32, tf.float32))
- merged_boxes = tf.reshape(merged_boxes, [-1, 4])
- class_encodings = tf.reshape(class_encodings, [-1, num_classes])
- confidence_encodings = tf.reshape(confidence_encodings, [-1, num_classes])
- merged_box_indices = tf.reshape(merged_box_indices, [-1])
- return (merged_boxes, class_encodings, confidence_encodings,
- merged_box_indices)
- def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None,
- width_scale=None):
- """Nearest neighbor upsampling implementation.
- Nearest neighbor upsampling function that maps input tensor with shape
- [batch_size, height, width, channels] to [batch_size, height * scale
- , width * scale, channels]. This implementation only uses reshape and
- broadcasting to make it TPU compatible.
- Args:
- input_tensor: A float32 tensor of size [batch, height_in, width_in,
- channels].
- scale: An integer multiple to scale resolution of input data in both height
- and width dimensions.
- height_scale: An integer multiple to scale the height of input image. This
- option when provided overrides `scale` option.
- width_scale: An integer multiple to scale the width of input image. This
- option when provided overrides `scale` option.
- Returns:
- data_up: A float32 tensor of size
- [batch, height_in*scale, width_in*scale, channels].
- Raises:
- ValueError: If both scale and height_scale or if both scale and width_scale
- are None.
- """
- if not scale and (height_scale is None or width_scale is None):
- raise ValueError('Provide either `scale` or `height_scale` and'
- ' `width_scale`.')
- with tf.name_scope('nearest_neighbor_upsampling'):
- h_scale = scale if height_scale is None else height_scale
- w_scale = scale if width_scale is None else width_scale
- (batch_size, height, width,
- channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
- output_tensor = tf.reshape(
- input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones(
- [1, 1, h_scale, 1, w_scale, 1], dtype=input_tensor.dtype)
- return tf.reshape(output_tensor,
- [batch_size, height * h_scale, width * w_scale, channels])
- def matmul_gather_on_zeroth_axis(params, indices, scope=None):
- """Matrix multiplication based implementation of tf.gather on zeroth axis.
- TODO(rathodv, jonathanhuang): enable sparse matmul option.
- Args:
- params: A float32 Tensor. The tensor from which to gather values.
- Must be at least rank 1.
- indices: A Tensor. Must be one of the following types: int32, int64.
- Must be in range [0, params.shape[0])
- scope: A name for the operation (optional).
- Returns:
- A Tensor. Has the same type as params. Values from params gathered
- from indices given by indices, with shape indices.shape + params.shape[1:].
- """
- with tf.name_scope(scope, 'MatMulGather'):
- params_shape = shape_utils.combined_static_and_dynamic_shape(params)
- indices_shape = shape_utils.combined_static_and_dynamic_shape(indices)
- params2d = tf.reshape(params, [params_shape[0], -1])
- indicator_matrix = tf.one_hot(indices, params_shape[0])
- gathered_result_flattened = tf.matmul(indicator_matrix, params2d)
- return tf.reshape(gathered_result_flattened,
- tf.stack(indices_shape + params_shape[1:]))
- def matmul_crop_and_resize(image, boxes, crop_size, scope=None):
- """Matrix multiplication based implementation of the crop and resize op.
- Extracts crops from the input image tensor and bilinearly resizes them
- (possibly with aspect ratio change) to a common output size specified by
- crop_size. This is more general than the crop_to_bounding_box op which
- extracts a fixed size slice from the input image and does not allow
- resizing or aspect ratio change.
- Returns a tensor with crops from the input image at positions defined at
- the bounding box locations in boxes. The cropped boxes are all resized
- (with bilinear interpolation) to a fixed size = `[crop_height, crop_width]`.
- The result is a 5-D tensor `[batch, num_boxes, crop_height, crop_width,
- depth]`.
- Running time complexity:
- O((# channels) * (# boxes) * (crop_size)^2 * M), where M is the number
- of pixels of the longer edge of the image.
- Note that this operation is meant to replicate the behavior of the standard
- tf.image.crop_and_resize operation but there are a few differences.
- Specifically:
- 1) The extrapolation value (the values that are interpolated from outside
- the bounds of the image window) is always zero
- 2) Only XLA supported operations are used (e.g., matrix multiplication).
- 3) There is no `box_indices` argument --- to run this op on multiple images,
- one must currently call this op independently on each image.
- 4) All shapes and the `crop_size` parameter are assumed to be statically
- defined. Moreover, the number of boxes must be strictly nonzero.
- Args:
- image: A `Tensor`. Must be one of the following types: `uint8`, `int8`,
- `int16`, `int32`, `int64`, `half`, 'bfloat16', `float32`, `float64`.
- A 4-D tensor of shape `[batch, image_height, image_width, depth]`.
- Both `image_height` and `image_width` need to be positive.
- boxes: A `Tensor` of type `float32` or 'bfloat16'.
- A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in
- normalized coordinates and are of the form `[y1, x1, y2, x2]`. A
- normalized coordinate value of `y` is mapped to the image coordinate at
- `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image
- height is mapped to `[0, image_height - 1] in image height coordinates.
- We do allow y1 > y2, in which case the sampled crop is an up-down flipped
- version of the original image. The width dimension is treated similarly.
- Normalized coordinates outside the `[0, 1]` range are allowed, in which
- case we use `extrapolation_value` to extrapolate the input image values.
- crop_size: A list of two integers `[crop_height, crop_width]`. All
- cropped image patches are resized to this size. The aspect ratio of the
- image content is not preserved. Both `crop_height` and `crop_width` need
- to be positive.
- scope: A name for the operation (optional).
- Returns:
- A 5-D tensor of shape `[batch, num_boxes, crop_height, crop_width, depth]`
- Raises:
- ValueError: if image tensor does not have shape
- `[batch, image_height, image_width, depth]` and all dimensions statically
- defined.
- ValueError: if boxes tensor does not have shape `[batch, num_boxes, 4]`
- where num_boxes > 0.
- ValueError: if crop_size is not a list of two positive integers
- """
- img_shape = image.shape.as_list()
- boxes_shape = boxes.shape.as_list()
- _, img_height, img_width, _ = img_shape
- if not isinstance(crop_size, list) or len(crop_size) != 2:
- raise ValueError('`crop_size` must be a list of length 2')
- dimensions = img_shape + crop_size + boxes_shape
- if not all([isinstance(dim, int) for dim in dimensions]):
- raise ValueError('all input shapes must be statically defined')
- if len(boxes_shape) != 3 or boxes_shape[2] != 4:
- raise ValueError('`boxes` should have shape `[batch, num_boxes, 4]`')
- if len(img_shape) != 4:
- raise ValueError('image should have shape '
- '`[batch, image_height, image_width, depth]`')
- num_crops = boxes_shape[0]
- if not num_crops > 0:
- raise ValueError('number of boxes must be > 0')
- if not (crop_size[0] > 0 and crop_size[1] > 0):
- raise ValueError('`crop_size` must be a list of two positive integers.')
- def _lin_space_weights(num, img_size):
- if num > 1:
- start_weights = tf.linspace(img_size - 1.0, 0.0, num)
- stop_weights = img_size - 1 - start_weights
- else:
- start_weights = tf.constant(num * [.5 * (img_size - 1)], dtype=tf.float32)
- stop_weights = tf.constant(num * [.5 * (img_size - 1)], dtype=tf.float32)
- return (start_weights, stop_weights)
- with tf.name_scope(scope, 'MatMulCropAndResize'):
- y1_weights, y2_weights = _lin_space_weights(crop_size[0], img_height)
- x1_weights, x2_weights = _lin_space_weights(crop_size[1], img_width)
- y1_weights = tf.cast(y1_weights, boxes.dtype)
- y2_weights = tf.cast(y2_weights, boxes.dtype)
- x1_weights = tf.cast(x1_weights, boxes.dtype)
- x2_weights = tf.cast(x2_weights, boxes.dtype)
- [y1, x1, y2, x2] = tf.unstack(boxes, axis=2)
- # Pixel centers of input image and grid points along height and width
- image_idx_h = tf.constant(
- np.reshape(np.arange(img_height), (1, 1, 1, img_height)),
- dtype=boxes.dtype)
- image_idx_w = tf.constant(
- np.reshape(np.arange(img_width), (1, 1, 1, img_width)),
- dtype=boxes.dtype)
- grid_pos_h = tf.expand_dims(
- tf.einsum('ab,c->abc', y1, y1_weights) + tf.einsum(
- 'ab,c->abc', y2, y2_weights),
- axis=3)
- grid_pos_w = tf.expand_dims(
- tf.einsum('ab,c->abc', x1, x1_weights) + tf.einsum(
- 'ab,c->abc', x2, x2_weights),
- axis=3)
- # Create kernel matrices of pairwise kernel evaluations between pixel
- # centers of image and grid points.
- kernel_h = tf.nn.relu(1 - tf.abs(image_idx_h - grid_pos_h))
- kernel_w = tf.nn.relu(1 - tf.abs(image_idx_w - grid_pos_w))
- # Compute matrix multiplication between the spatial dimensions of the image
- # and height-wise kernel using einsum.
- intermediate_image = tf.einsum('abci,aiop->abcop', kernel_h, image)
- # Compute matrix multiplication between the spatial dimensions of the
- # intermediate_image and width-wise kernel using einsum.
- return tf.einsum('abno,abcop->abcnp', kernel_w, intermediate_image)
- def native_crop_and_resize(image, boxes, crop_size, scope=None):
- """Same as `matmul_crop_and_resize` but uses tf.image.crop_and_resize."""
- def get_box_inds(proposals):
- proposals_shape = proposals.get_shape().as_list()
- if any(dim is None for dim in proposals_shape):
- proposals_shape = tf.shape(proposals)
- ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32)
- multiplier = tf.expand_dims(
- tf.range(start=0, limit=proposals_shape[0]), 1)
- return tf.reshape(ones_mat * multiplier, [-1])
- with tf.name_scope(scope, 'CropAndResize'):
- cropped_regions = tf.image.crop_and_resize(
- image, tf.reshape(boxes, [-1] + boxes.shape.as_list()[2:]),
- get_box_inds(boxes), crop_size)
- final_shape = tf.concat([tf.shape(boxes)[:2],
- tf.shape(cropped_regions)[1:]], axis=0)
- return tf.reshape(cropped_regions, final_shape)
- def expected_classification_loss_under_sampling(
- batch_cls_targets, cls_losses, unmatched_cls_losses,
- desired_negative_sampling_ratio, min_num_negative_samples):
- """Computes classification loss by background/foreground weighting.
- The weighting is such that the effective background/foreground weight ratio
- is the desired_negative_sampling_ratio. if p_i is the foreground probability
- of anchor a_i, L(a_i) is the anchors loss, N is the number of anchors, M
- is the sum of foreground probabilities across anchors, and K is the desired
- ratio between the number of negative and positive samples, then the total loss
- L is calculated as:
- beta = K*M/(N-M)
- L = sum_{i=1}^N [p_i * L_p(a_i) + beta * (1 - p_i) * L_n(a_i)]
- where L_p(a_i) is the loss against target assuming the anchor was matched,
- otherwise zero, and L_n(a_i) is the loss against the background target
- assuming the anchor was unmatched, otherwise zero.
- Args:
- batch_cls_targets: A tensor with shape [batch_size, num_anchors, num_classes
- + 1], where 0'th index is the background class, containing the class
- distrubution for the target assigned to a given anchor.
- cls_losses: Float tensor of shape [batch_size, num_anchors] representing
- anchorwise classification losses.
- unmatched_cls_losses: loss for each anchor against the unmatched class
- target.
- desired_negative_sampling_ratio: The desired background/foreground weight
- ratio.
- min_num_negative_samples: Minimum number of effective negative samples.
- Used only when there are no positive examples.
- Returns:
- The classification loss.
- """
- num_anchors = tf.cast(tf.shape(batch_cls_targets)[1], tf.float32)
- # find the p_i
- foreground_probabilities = 1 - batch_cls_targets[:, :, 0]
- foreground_sum = tf.reduce_sum(foreground_probabilities, axis=-1)
- # for each anchor, expected_j is the expected number of positive anchors
- # given that this anchor was sampled as negative.
- tiled_foreground_sum = tf.tile(
- tf.reshape(foreground_sum, [-1, 1]),
- [1, tf.cast(num_anchors, tf.int32)])
- expected_j = tiled_foreground_sum - foreground_probabilities
- k = desired_negative_sampling_ratio
- # compute beta
- expected_negatives = tf.to_float(num_anchors) - expected_j
- desired_negatives = k * expected_j
- desired_negatives = tf.where(
- tf.greater(desired_negatives, expected_negatives), expected_negatives,
- desired_negatives)
- # probability that an anchor is sampled for the loss computation given that it
- # is negative.
- beta = desired_negatives / expected_negatives
- # where the foreground sum is zero, use a minimum negative weight.
- min_negative_weight = 1.0 * min_num_negative_samples / num_anchors
- beta = tf.where(
- tf.equal(tiled_foreground_sum, 0),
- min_negative_weight * tf.ones_like(beta), beta)
- foreground_weights = foreground_probabilities
- background_weights = (1 - foreground_weights) * beta
- weighted_foreground_losses = foreground_weights * cls_losses
- weighted_background_losses = background_weights * unmatched_cls_losses
- cls_losses = tf.reduce_sum(
- weighted_foreground_losses, axis=-1) + tf.reduce_sum(
- weighted_background_losses, axis=-1)
- return cls_losses
|