123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Utils used to manipulate tensor shapes."""
- import tensorflow as tf
- from segment.sheet_resolve.lib.ssd_model.utils import static_shape
- def _is_tensor(t):
- """Returns a boolean indicating whether the input is a tensor.
- Args:
- t: the input to be tested.
- Returns:
- a boolean that indicates whether t is a tensor.
- """
- return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable))
- def _set_dim_0(t, d0):
- """Sets the 0-th dimension of the input tensor.
- Args:
- t: the input tensor, assuming the rank is at least 1.
- d0: an integer indicating the 0-th dimension of the input tensor.
- Returns:
- the tensor t with the 0-th dimension set.
- """
- t_shape = t.get_shape().as_list()
- t_shape[0] = d0
- t.set_shape(t_shape)
- return t
- def pad_tensor(t, length):
- """Pads the input tensor with 0s along the first dimension up to the length.
- Args:
- t: the input tensor, assuming the rank is at least 1.
- length: a tensor of shape [1] or an integer, indicating the first dimension
- of the input tensor t after padding, assuming length <= t.shape[0].
- Returns:
- padded_t: the padded tensor, whose first dimension is length. If the length
- is an integer, the first dimension of padded_t is set to length
- statically.
- """
- t_rank = tf.rank(t)
- t_shape = tf.shape(t)
- t_d0 = t_shape[0]
- pad_d0 = tf.expand_dims(length - t_d0, 0)
- pad_shape = tf.cond(
- tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
- lambda: tf.expand_dims(length - t_d0, 0))
- padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0)
- if not _is_tensor(length):
- padded_t = _set_dim_0(padded_t, length)
- return padded_t
- def clip_tensor(t, length):
- """Clips the input tensor along the first dimension up to the length.
- Args:
- t: the input tensor, assuming the rank is at least 1.
- length: a tensor of shape [1] or an integer, indicating the first dimension
- of the input tensor t after clipping, assuming length <= t.shape[0].
- Returns:
- clipped_t: the clipped tensor, whose first dimension is length. If the
- length is an integer, the first dimension of clipped_t is set to length
- statically.
- """
- clipped_t = tf.gather(t, tf.range(length))
- if not _is_tensor(length):
- clipped_t = _set_dim_0(clipped_t, length)
- return clipped_t
- def pad_or_clip_tensor(t, length):
- """Pad or clip the input tensor along the first dimension.
- Args:
- t: the input tensor, assuming the rank is at least 1.
- length: a tensor of shape [1] or an integer, indicating the first dimension
- of the input tensor t after processing.
- Returns:
- processed_t: the processed tensor, whose first dimension is length. If the
- length is an integer, the first dimension of the processed tensor is set
- to length statically.
- """
- return pad_or_clip_nd(t, [length] + t.shape.as_list()[1:])
- def pad_or_clip_nd(tensor, output_shape):
- """Pad or Clip given tensor to the output shape.
- Args:
- tensor: Input tensor to pad or clip.
- output_shape: A list of integers / scalar tensors (or None for dynamic dim)
- representing the size to pad or clip each dimension of the input tensor.
- Returns:
- Input tensor padded and clipped to the output shape.
- """
- tensor_shape = tf.shape(tensor)
- clip_size = [
- tf.where(tensor_shape[i] - shape > 0, shape, -1)
- if shape is not None else -1 for i, shape in enumerate(output_shape)
- ]
- clipped_tensor = tf.slice(
- tensor,
- begin=tf.zeros(len(clip_size), dtype=tf.int32),
- size=clip_size)
- # Pad tensor if the shape of clipped tensor is smaller than the expected
- # shape.
- clipped_tensor_shape = tf.shape(clipped_tensor)
- trailing_paddings = [
- shape - clipped_tensor_shape[i] if shape is not None else 0
- for i, shape in enumerate(output_shape)
- ]
- paddings = tf.stack(
- [
- tf.zeros(len(trailing_paddings), dtype=tf.int32),
- trailing_paddings
- ],
- axis=1)
- padded_tensor = tf.pad(clipped_tensor, paddings=paddings)
- output_static_shape = [
- dim if not isinstance(dim, tf.Tensor) else None for dim in output_shape
- ]
- padded_tensor.set_shape(output_static_shape)
- return padded_tensor
- def combined_static_and_dynamic_shape(tensor):
- """Returns a list containing static and dynamic values for the dimensions.
- Returns a list of static and dynamic values for shape dimensions. This is
- useful to preserve static shapes when available in reshape operation.
- Args:
- tensor: A tensor of any type.
- Returns:
- A list of size tensor.shape.ndims containing integers or a scalar tensor.
- """
- static_tensor_shape = tensor.shape.as_list()
- dynamic_tensor_shape = tf.shape(tensor)
- combined_shape = []
- for index, dim in enumerate(static_tensor_shape):
- if dim is not None:
- combined_shape.append(dim)
- else:
- combined_shape.append(dynamic_tensor_shape[index])
- return combined_shape
- def static_or_dynamic_map_fn(fn, elems, dtype=None,
- parallel_iterations=32, back_prop=True):
- """Runs map_fn as a (static) for loop when possible.
- This function rewrites the map_fn as an explicit unstack input -> for loop
- over function calls -> stack result combination. This allows our graphs to
- be acyclic when the batch size is static.
- For comparison, see https://www.tensorflow.org/api_docs/python/tf/map_fn.
- Note that `static_or_dynamic_map_fn` currently is not *fully* interchangeable
- with the default tf.map_fn function as it does not accept nested inputs (only
- Tensors or lists of Tensors). Likewise, the output of `fn` can only be a
- Tensor or list of Tensors.
- TODO(jonathanhuang): make this function fully interchangeable with tf.map_fn.
- Args:
- fn: The callable to be performed. It accepts one argument, which will have
- the same structure as elems. Its output must have the
- same structure as elems.
- elems: A tensor or list of tensors, each of which will
- be unpacked along their first dimension. The sequence of the
- resulting slices will be applied to fn.
- dtype: (optional) The output type(s) of fn. If fn returns a structure of
- Tensors differing from the structure of elems, then dtype is not optional
- and must have the same structure as the output of fn.
- parallel_iterations: (optional) number of batch items to process in
- parallel. This flag is only used if the native tf.map_fn is used
- and defaults to 32 instead of 10 (unlike the standard tf.map_fn default).
- back_prop: (optional) True enables support for back propagation.
- This flag is only used if the native tf.map_fn is used.
- Returns:
- A tensor or sequence of tensors. Each tensor packs the
- results of applying fn to tensors unpacked from elems along the first
- dimension, from first to last.
- Raises:
- ValueError: if `elems` a Tensor or a list of Tensors.
- ValueError: if `fn` does not return a Tensor or list of Tensors
- """
- if isinstance(elems, list):
- for elem in elems:
- if not isinstance(elem, tf.Tensor):
- raise ValueError('`elems` must be a Tensor or list of Tensors.')
- elem_shapes = [elem.shape.as_list() for elem in elems]
- # Fall back on tf.map_fn if shapes of each entry of `elems` are None or fail
- # to all be the same size along the batch dimension.
- for elem_shape in elem_shapes:
- if (not elem_shape or not elem_shape[0]
- or elem_shape[0] != elem_shapes[0][0]):
- return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
- arg_tuples = zip(*[tf.unstack(elem) for elem in elems])
- outputs = [fn(arg_tuple) for arg_tuple in arg_tuples]
- else:
- if not isinstance(elems, tf.Tensor):
- raise ValueError('`elems` must be a Tensor or list of Tensors.')
- elems_shape = elems.shape.as_list()
- if not elems_shape or not elems_shape[0]:
- return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop)
- outputs = [fn(arg) for arg in tf.unstack(elems)]
- # Stack `outputs`, which is a list of Tensors or list of lists of Tensors
- if all([isinstance(output, tf.Tensor) for output in outputs]):
- return tf.stack(outputs)
- else:
- if all([isinstance(output, list) for output in outputs]):
- if all([all(
- [isinstance(entry, tf.Tensor) for entry in output_list])
- for output_list in outputs]):
- return [tf.stack(output_tuple) for output_tuple in zip(*outputs)]
- raise ValueError('`fn` should return a Tensor or a list of Tensors.')
- def check_min_image_dim(min_dim, image_tensor):
- """Checks that the image width/height are greater than some number.
- This function is used to check that the width and height of an image are above
- a certain value. If the image shape is static, this function will perform the
- check at graph construction time. Otherwise, if the image shape varies, an
- Assertion control dependency will be added to the graph.
- Args:
- min_dim: The minimum number of pixels along the width and height of the
- image.
- image_tensor: The image tensor to check size for.
- Returns:
- If `image_tensor` has dynamic size, return `image_tensor` with a Assert
- control dependency. Otherwise returns image_tensor.
- Raises:
- ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`.
- """
- image_shape = image_tensor.get_shape()
- image_height = static_shape.get_height(image_shape)
- image_width = static_shape.get_width(image_shape)
- if image_height is None or image_width is None:
- shape_assert = tf.Assert(
- tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim),
- tf.greater_equal(tf.shape(image_tensor)[2], min_dim)),
- ['image size must be >= {} in both height and width.'.format(min_dim)])
- with tf.control_dependencies([shape_assert]):
- return tf.identity(image_tensor)
- if image_height < min_dim or image_width < min_dim:
- raise ValueError(
- 'image size must be >= %d in both height and width; image dim = %d,%d' %
- (min_dim, image_height, image_width))
- return image_tensor
- def assert_shape_equal(shape_a, shape_b):
- """Asserts that shape_a and shape_b are equal.
- If the shapes are static, raises a ValueError when the shapes
- mismatch.
- If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
- mismatch.
- Args:
- shape_a: a list containing shape of the first tensor.
- shape_b: a list containing shape of the second tensor.
- Returns:
- Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
- when the shapes are dynamic.
- Raises:
- ValueError: When shapes are both static and unequal.
- """
- if (all(isinstance(dim, int) for dim in shape_a) and
- all(isinstance(dim, int) for dim in shape_b)):
- if shape_a != shape_b:
- raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b))
- else: return tf.no_op()
- else:
- return tf.assert_equal(shape_a, shape_b)
- def assert_shape_equal_along_first_dimension(shape_a, shape_b):
- """Asserts that shape_a and shape_b are the same along the 0th-dimension.
- If the shapes are static, raises a ValueError when the shapes
- mismatch.
- If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes
- mismatch.
- Args:
- shape_a: a list containing shape of the first tensor.
- shape_b: a list containing shape of the second tensor.
- Returns:
- Either a tf.no_op() when shapes are all static and a tf.assert_equal() op
- when the shapes are dynamic.
- Raises:
- ValueError: When shapes are both static and unequal.
- """
- if isinstance(shape_a[0], int) and isinstance(shape_b[0], int):
- if shape_a[0] != shape_b[0]:
- raise ValueError('Unequal first dimension {}, {}'.format(
- shape_a[0], shape_b[0]))
- else: return tf.no_op()
- else:
- return tf.assert_equal(shape_a[0], shape_b[0])
- def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1):
- """Asserts the input box tensor is normalized.
- Args:
- boxes: a tensor of shape [N, 4] where N is the number of boxes.
- maximum_normalized_coordinate: Maximum coordinate value to be considered
- as normalized, default to 1.1.
- Returns:
- a tf.Assert op which fails when the input box tensor is not normalized.
- Raises:
- ValueError: When the input box tensor is not normalized.
- """
- box_minimum = tf.reduce_min(boxes)
- box_maximum = tf.reduce_max(boxes)
- return tf.Assert(
- tf.logical_and(
- tf.less_equal(box_maximum, maximum_normalized_coordinate),
- tf.greater_equal(box_minimum, 0)),
- [boxes])
|