1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- # --------------------------------------------------------
- # Fast R-CNN
- # Copyright (c) 2015 Microsoft
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Ross Girshick
- # --------------------------------------------------------
- """Blob helper functions."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import cv2
- def im_list_to_blob(ims):
- """Convert a list of images into a network input.
- Assumes images are already prepared (means subtracted, BGR order, ...).
- """
- max_shape = np.array([im.shape for im in ims]).max(axis=0)
- num_images = len(ims)
- blob = np.zeros((num_images, max_shape[0], max_shape[1], 3),
- dtype=np.float32)
- for i in range(num_images):
- im = ims[i]
- blob[i, 0:im.shape[0], 0:im.shape[1], :] = im
- return blob
- def prep_im_for_blob(im, pixel_means, target_size, max_size):
- """Mean subtract and scale an image for use in a blob."""
- im = im.astype(np.float32, copy=False)
- im -= pixel_means
- im_shape = im.shape
- im_size_min = np.min(im_shape[0:2])
- im_size_max = np.max(im_shape[0:2])
- im_scale = float(target_size) / float(im_size_min)
- # Prevent the biggest axis from being more than MAX_SIZE
- if np.round(im_scale * im_size_max) > max_size:
- im_scale = float(max_size) / float(im_size_max)
- im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale,
- interpolation=cv2.INTER_LINEAR)
- return im, im_scale
|