Selaa lähdekoodia

提交自动标注

liuyazhong 1 kuukausi sitten
commit
ebd67e04ed

+ 7 - 0
.env

@@ -0,0 +1,7 @@
+MODEL_PATH="/home/cv/workspace/tujintao/physics_llm_finetuning/qwen2/"
+MATH_KNOWLEDGES_FILE_PATH = "/tmp/physics_auto_label/model/math_knowledges.txt"
+PHYSICS_KNOWLEDGES_FILE_PATH = "/tmp/physics_auto_label/model/physics_knowledges.txt"
+MATH_LORA_PATH = "/tmp/physics_auto_label/model/math_adapter"
+MATH_LORA_NAME = "math"
+PHYSICS_LORA_PATH = "/tmp/physics_auto_label/model/physics_adapter"
+PHYSICS_LORA_NAME = "physics"

+ 0 - 0
common/__init__.py


+ 157 - 0
common/data_utils.py

@@ -0,0 +1,157 @@
+import json
+import re
+import random
+
+from main_clear.sci_clear import get_maplef_items
+from config.config import log
+# 通用公有变量
+public_id = 0
+# 数据预处理
+class DataPreProcessing():
+    def __init__(self, logger=None):
+        self.logger = logger
+        self.log_msg = "id : {id} -> {type} -> {message}"
+    # 清洗函数
+    def clear_func(self, content):
+        if content in {'', None}:
+            return ''
+        # 将content字符串化,防止content是int/float型
+        if isinstance(content, str) is False:
+            if isinstance(content, int) or isinstance(content, float):
+                return str(content)
+        try:
+            # 进行文本清洗
+            content_clear = get_maplef_items(content)
+        except Exception as e:
+            # 通用公有变量
+            global public_id
+            # 日志采集
+            print(self.log_msg.format(id=public_id,
+                                      type="清洗错误: " + str(e),
+                                      message=str(content))) if self.logger is None else None
+            self.logger.error(self.log_msg.format(id=public_id,
+                                                  type="清洗错误: " + str(e),
+                                                  message=str(content))) if self.logger is not None else None
+            # 对于无法清洗的文本通过正则表达式直接获取文本中的中文字符
+            content_clear = re.sub(r'[^\u4e00-\u9fa5]', '', content)
+            raise e
+
+        return content_clear
+
+    # 重叠截取长文本进行Sentence-Bert训练
+    def truncate_func(self, content):
+        # 设置长文本截断长度
+        cut_length = 150
+        # 设置截断重叠长度
+        overlap = 10
+        content_cut_list = []
+
+        # 若文本长度小于等于截断长度,则取消截取直接返回
+        cont_length = len(content)
+        if cont_length <= cut_length:
+            content_cut_list = [content]
+            return content_cut_list
+
+        # 若文本长度大于截断长度,则进行重叠截断
+        # 设定文本截断尾部合并阈值(针对尾部文本根据长度进行合并)
+        # 防止截断后出现极短文本影响模型效果
+        tail_merge_value = 0.5 * cut_length
+        for i in range(0, cont_length, cut_length - overlap):
+            tail_idx = i + cut_length
+            cut_content = content[i:tail_idx]
+            # 保留单词完整性
+            # 判断尾部字符
+            if cont_length - tail_idx > tail_merge_value:
+                for j in range(len(cut_content) - 1, -1, -1):
+                    # 判断当前字符是否为字母或者数字
+                    # 若不是字母或者数字则截取成功
+                    if re.search('[A-Za-z]', cut_content[j]) is None:
+                        cut_content = cut_content[:j + 1]
+                        break
+            else:
+                cut_content = content[i:]
+            # 判断头部字符
+            if i != 0:
+                for k in range(len(cut_content)):
+                    # 判断当前字符是否为字母或者数字
+                    # 若不是字母或者数字则截取成功
+                    if re.search('[A-Za-z]', cut_content[k]) is None:
+                        cut_content = cut_content[k + 1:]
+                        break
+            # 将头部和尾部都处理好的截断文本存入content_cut_list
+            content_cut_list.append(cut_content)
+            # 针对尾部文本截断长度为140-150以及满足尾部合并阈值的文本
+            # 进行重叠截断进行特殊处理
+            if cont_length - tail_idx <= tail_merge_value:
+                break
+
+        return content_cut_list
+
+    # 全文本数据清洗
+    def content_clear_func(self, content):
+        # 文本清洗
+        content_clear = self.clear_func(content)
+        # 去除文本中的空格以及空字符串
+        content_clear = re.sub(r',+', ',', re.sub(r'[\s_]', '', content_clear))
+
+        # 去除题目开头"【题文】(多选)/(..分)"
+        content_clear = re.sub(r'\[题文\]', '', content_clear)
+        content_clear = re.sub(r'(\([单多]选\)|\[[单多]选\])', '', content_clear)
+        content_clear = re.sub(r'(\(\d{1,2}分\)|\[\d{1,2}分\])', '', content_clear)
+        # # 将文本中的选项"A.B.C.D."改为";"
+        # content_clear = re.sub(r'[ABCD]\.', ';', content_clear)
+        # # 若选项中只有1,2,3或(1)(2)(3),或者只有标点符号,则过滤该选项
+        # content_clear = re.sub(r'(\(\d\)[、,;\.]?)+\(\d\)|\d[、,;]+\d', '', content_clear)
+        # 去除题目开头(...年...[中模月]考)文本
+        head_search = re.search(r'^(\(.*?[\)\]]?\)|\[.*?[\)\]]?\])', content_clear)
+        if head_search is not None and 5 < head_search.span(0)[1] < 40:
+            head_value = content_clear[head_search.span(0)[0] + 1:head_search.span(0)[1] - 1]
+            if re.search(r'.*?(\d{2}|[模检测训练考试验期省市县外第初高中学]).*?[模检测训练考试验期省市县外第初高中学].*?', head_value):
+                content_clear = content_clear[head_search.span(0)[1]:].lstrip()
+        # 对于只有图片格式以及标点符号的信息进行特殊处理(去除标点符号/空格/连接符)
+        if re.sub(r'[\.、。,;\:\?!#\-> ]+', '', content_clear) == '':
+            content_clear = ''
+
+        return content_clear
+
+    # 数据清洗与长文本重叠截取处理
+    def content_clear_process(self, data):
+        # 初始化content_clear
+        content_clear = ''
+        # 全文本数据清洗
+        content_clear = self.content_clear_func(data)
+
+        # 重叠截取长文本用于进行Sentence-Bert训练
+        # content_cut_list = self.truncate_func(content_clear)
+
+        return content_clear
+
+from config.config import log
+dpp = DataPreProcessing(logger=log)
+def convert_option(options):
+    option_desc = ""
+    for i, option in enumerate(options):
+        if i == 0:
+            option_desc += "A. " + dpp.content_clear_func(options[i]["content"])
+        if i == 1:
+            option_desc += "\n" + "B. " + dpp.content_clear_func(options[i]["content"])
+        if i == 2:
+            option_desc += "\n" + "C. " + dpp.content_clear_func(options[i]["content"])
+        if i == 3:
+            option_desc += "\n" + "D. " + dpp.content_clear_func(options[i]["content"])
+    return option_desc
+
+def build_params(request_dict):
+
+    content = dpp.content_clear_func(request_dict["topic_text"])
+    option = request_dict["option"]
+    parse = dpp.content_clear_func(request_dict["parse"]) if len(request_dict["parse"]) != 0 else request_dict["parse"]
+    if len(option) != 0:
+        option = convert_option(option)
+    if option:
+        content = content + "\n" + option
+    content = content + "\n" + "解析过程\n"
+    content += parse
+    sentence = "根据题目描述和解析过程\n'''题目描述:\n" + content + "'''\n,给出考察的知识点。"
+    log.debug("清洗后的句子"+sentence)
+    return sentence

+ 48 - 0
common/logger.py

@@ -0,0 +1,48 @@
+import sys
+import loguru
+
+log_config = {
+    "DEBUG": {"level": 10, "color": "purple"},
+    "INFO": {"level": 20, "color": "green"},
+    "TRAIN": {"level": 21, "color": "cyan"},
+    "EVAL": {"level": 22, "color": "blue"},
+    "WARNING": {"level": 30, "color": "yellow"},
+    "ERROR": {"level": 40, "color": "red"},
+    "CRITICAL": {"level": 50, "color": "bold_red"},
+}
+
+log_colors_config = {
+    "DEBUG": "white",  # cyan white
+    "INFO": "green",
+    "WARNING": "yellow",
+    "ERROR": "red",
+    "CRITICAL": "bold_red",
+}
+
+def get_logger(level: str = "INFO", console: bool = True, logger_file: str = None):
+    """
+
+    :param level: 选择日志的级别,可选trace,debug,info,warning,error,critical
+    :param console: 是不进行控制台输出日志
+    :param logger_file: 日志文件路径,None则表示不输出日志到文件
+    :return:
+    """
+    logger = loguru.logger
+    logger.remove()
+
+    if console:
+        logger.add(sys.stderr, level=level.upper())
+
+    # 添加一个文件输出的内容
+    # 目前每天一个日志文件,日志文件最多保存7天
+    if logger_file is not None:
+        logger.add(
+            logger_file,
+            enqueue=True,
+            level=level.upper(),
+            encoding="utf-8",
+            rotation="00:00",
+            retention="7 days",
+        )
+
+    return logger

+ 19 - 0
common/valid_check.py

@@ -0,0 +1,19 @@
+from enum import Enum
+class LabelExceptionErrCode(Enum):
+    PARAM_NOT_NULL = -2#参数不能为空
+    NUM_OVER_LIMIT = -3#数量超过限制
+    SUBJECT_ID_NOT_VALID = -4#学科id不合法
+
+
+def valid_params(*args):
+    if len(args) == 0:
+        return False
+    for arg in args:
+        if arg == None or arg == "":
+            return False
+    return True
+
+def valid_is_contained(ele, ele_list):
+    if ele not in ele_list:
+        return False
+    return True

+ 0 - 0
config/__init__.py


+ 4 - 0
config/config.py

@@ -0,0 +1,4 @@
+#加入日志记录
+from common import logger
+log = logger.get_logger(level="INFO", logger_file="server.log")
+subject_id = [3,12]

+ 0 - 0
llm/__init__.py


+ 62 - 0
llm/build_model.py

@@ -0,0 +1,62 @@
+import torch
+from langchain.llms.base import LLM
+from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
+from typing import Optional, Any, List
+from langchain_core.callbacks import CallbackManagerForLLMRun
+import os
+from peft import PeftModel, PeftModelForCausalLM
+from config.config import log
+#自定义千问模型支持接口
+class Qwen_LLM(LLM):
+    tokenizer: AutoTokenizer = None
+    model: AutoModelForCausalLM = None
+    generation_config: GenerationConfig = None
+    model_wrapper: PeftModelForCausalLM = None
+    def __init__(self, model_path):
+        super(Qwen_LLM, self).__init__()
+        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
+        self.model = AutoModelForCausalLM.from_pretrained(model_path,
+                                                          torch_dtype=torch.float16,
+                                                          device_map={"":0})
+        self.model_wrapper = PeftModel.from_pretrained(self.model, os.environ.get("MATH_LORA_PATH"), adapter_name=os.environ.get("MATH_LORA_NAME"))
+        self.model_wrapper.load_adapter(os.environ.get("PHYSICS_LORA_PATH"), adapter_name=os.environ.get("PHYSICS_LORA_NAME"))
+        self.generation_config = GenerationConfig(
+            temperature=0.05,
+            top_p=0.7,
+            do_sample=True,
+            max_new_tokens=600,  # max_length=max_new_tokens+input_sequence
+            repetition_penalty=1.02,
+            eos_token_id=self.tokenizer.eos_token_id
+        )
+
+    def _call(
+        self,
+        prompt: str,
+        stop: Optional[List[str]] = None,
+        run_manager: Optional[CallbackManagerForLLMRun] = None,
+        **kwargs: Any,
+    ) -> str:
+        subject_id = kwargs.get("subject_id", -1)
+        log.info("值:"+str(subject_id))
+        #物理学科
+        if subject_id == 12:
+            #self.model_wrapper.set_adapter(os.environ.get("PHYSICS_LORA_NAME"))
+            PeftModel.from_pretrained(self.model, os.environ.get("PHYSICS_LORA_PATH"),
+                                      adapter_name=os.environ.get("PHYSICS_LORA_NAME"))
+        if subject_id == 3:
+            self.model_wrapper = PeftModel.from_pretrained(self.model, os.environ.get("MATH_LORA_PATH"), adapter_name=os.environ.get("MATH_LORA_NAME"))
+        with torch.no_grad():
+            ids = self.tokenizer.encode(prompt) + [self.tokenizer.eos_token_id]
+            input_ids = torch.tensor([ids]).cuda()
+            output = self.model_wrapper.generate(input_ids=input_ids,
+                                         generation_config=self.generation_config)
+            out_ids = output.cpu()[0][input_ids.size(1):]
+        answer = self.tokenizer.decode(out_ids, skip_special_tokens=True)
+        log.info(answer)
+        return answer
+
+    def _llm_type(self) -> str:
+        """Return type of llm"""
+        return "qwen2"
+
+qwen2 = Qwen_LLM(os.environ.get("MODEL_PATH"))

+ 0 - 0
main_clear/__init__.py


+ 0 - 0
main_clear/latex2maple/__init__.py


+ 193 - 0
main_clear/latex2maple/aggregator.py

@@ -0,0 +1,193 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2016-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __license__ = "MIT"
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+from .commands import MATRICES
+from .exceptions import EmptyGroupError, NumeratorNotFoundError, DenominatorNotFoundError
+from .tokenizer import tokenize
+
+
+def group(tokens, opening='{', closing='}'):
+    g = [] if opening=='{' else ['\left'+opening]
+    while True:
+        token = next(tokens)
+        if token == closing:
+            if len(g):
+                break
+            else:
+                raise EmptyGroupError
+        elif token == opening:
+            try:
+                g.append(group(tokens))
+            except EmptyGroupError:
+                g += [opening, closing]
+        else:
+            g.append(token)
+    if closing != '}':
+        g.append(r'\right'+closing)
+    return _aggregate(iter(g))
+
+
+def process_row(tokens):
+    row = []
+    content = []
+    for token in tokens:
+        if token == '&':
+            pass
+        elif token == '\\\\':
+            if len(row):
+                content.append(row)
+            row = []
+        else:
+            row.append(token)
+    if len(row):
+        content.append(row)
+    while len(content) == 1 and isinstance(content[0], list):
+        content = content.pop()
+    return content
+
+
+def environment(begin, tokens):
+    if begin.startswith(r'\begin'):
+        env = begin[7:-1]
+    else:
+        env = begin[1:]
+    alignment = None
+    content = []
+    row = []
+    while True:
+        try:
+            token = next_item_or_group(tokens)
+            if isinstance(token, list):
+                if env == 'array' and any(x in token for x in ['l','c','r','|',['l'],['c'],['r'],['|']]):
+                    alignment = token
+                else:
+                    row.append(process_row(token))
+            elif token == r'\end{{{}}}'.format(env):
+                break
+            elif token == '&':
+                pass
+            elif token == '\\\\':
+                content.append(row)
+                row = [';']
+            elif token == '[' and not len(content):
+                try:
+                    alignment = group(tokens, '[', ']')
+                except EmptyGroupError:
+                    pass
+            elif token == '--':
+                try:
+                    next_token = next(tokens)
+                    row.append([token, next_token])
+                except StopIteration:
+                    row.append(token)
+            elif token in '_^':
+                process_sub_sup(row, token, tokens)
+            else:
+                row.append(token)
+        except EmptyGroupError:
+            row += ['{', '}']
+            continue
+        except StopIteration:
+            break
+    if len(row):
+        content.append(row)
+    while len(content) == 1 and isinstance(content[0], list):
+        content = content.pop()
+    if alignment:
+        # return r'\{}'.format(env), ''.join(alignment), content
+        return content
+    else:
+        return content
+
+def next_item_or_group(tokens):
+    token = next(tokens)
+    if token == '{':
+        return group(tokens)
+    return token
+
+
+def _aggregate(tokens):
+    aggregated = []
+    while True:
+        try:
+            token = next_item_or_group(tokens)
+            if isinstance(token, list):
+                aggregated.append(token)
+            elif token == '[':
+                try:
+                    g = group(tokens, '[', ']')
+                    if len(aggregated):
+                        previous = aggregated[-1]
+                        if previous == r'\sqrt':
+                            root = next(tokens)
+                            if root == '{':
+                                try:
+                                    root = group(tokens)
+                                except EmptyGroupError:
+                                    root = ''
+                            aggregated[-1] = r'\root'
+                            aggregated.append(root)
+                        else:
+                            pass
+                    aggregated.append(g)
+                except EmptyGroupError:
+                    aggregated += ['[', ']']
+            elif token in '_^':
+                process_sub_sup(aggregated, token, tokens)
+            elif token.startswith(r'\begin') or token in MATRICES:
+                aggregated += environment(token, tokens)
+            elif token == r'\over':
+                try:
+                    numerator = aggregated.pop()
+                    aggregated.append(r'\frac')
+                    aggregated.append([numerator])
+                    denominator = next_item_or_group(tokens)
+                    aggregated.append([denominator])
+                except IndexError:
+                    raise NumeratorNotFoundError
+                except (StopIteration, EmptyGroupError):
+                    raise DenominatorNotFoundError
+            else:
+                aggregated.append(token)
+        except EmptyGroupError:
+            aggregated += ['{', '}']
+            continue
+        except StopIteration:
+            break
+    return aggregated
+
+
+def aggregate(data):
+    tokens = tokenize(data)
+    return _aggregate(tokens)
+
+
+def process_sub_sup(aggregated, token, tokens):
+    try:
+        previous = aggregated.pop()
+        if isinstance(previous, str) and previous in '+-*/=[]_^{}':
+            aggregated += [previous, token]
+            return
+        try:
+            next_token = next_item_or_group(tokens)
+            if len(aggregated) >= 2:
+                if aggregated[-2] == '_' and token == '^':
+                    aggregated[-2] = '_^'
+                    aggregated += [previous, next_token]
+                elif aggregated[-2] == '^' and token == '_':
+                    aggregated[-2] = '_^'
+                    aggregated += [next_token, previous]
+                else:
+                    aggregated += [token, previous, next_token]
+            else:
+                aggregated += [token, previous, next_token]
+        except EmptyGroupError:
+            aggregated += [previous, token, '{', '}']
+        except StopIteration:
+            return
+    except IndexError:
+        aggregated.append(token)

+ 48 - 0
main_clear/latex2maple/commands.py

@@ -0,0 +1,48 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2016-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __license__ = "MIT"
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+
+
+MATRICES = (
+    r'\matrix', r'\matrix*',
+    r'\pmatrix', r'\pmatrix*',
+    r'\bmatrix', r'\bmatrix*',
+    r'\Bmatrix', r'\Bmatrix*',
+    r'\vmatrix', r'\vmatrix*',
+    r'\Vmatrix', r'\Vmatrix*',
+    r'\array'
+)
+
+SPACES = (r'\,', r'\:', r'\;', '\\', r'\quad', r'\qquad')
+
+COMMANDS = {
+    # command: (params_count, mathml_equivalent, attributes)
+    '_': (2, 'msub', {}),
+    '^': (2, 'msup', {}),
+    '_^': (3, 'msubsup', {}),
+    r'\frac': (2, 'mfrac', {}),
+    # r'\lg': (1, 'mlg', {}),
+    # r'\ln': (1, 'mln', {}),
+    r'\text': (1, 'mtext', {}),
+    r'\sqrt': (1, 'msqrt', {}),
+    r'\root': (2, 'mroot', {}),
+    r'\binom': (2, 'mfrac', {'linethickness': '0'}),
+    r'\left': (1, 'mo', {'stretchy': 'true', 'fence': 'true', 'form': 'prefix'}),
+    r'\right': (1, 'mo', {'stretchy': 'true', 'fence': 'true', 'form': 'postfix'}),
+    r'\overline': (1, 'mover', {}),
+    r'\underline': (1, 'munder', {}),
+    r'\overrightarrow': (1, 'mover', {}),
+    r'\overrightarrowm': (1, 'mover', {}),
+
+    # r'\overline': (1, 'mover', {}),
+}
+
+for space in SPACES:
+    COMMANDS[space] = (0, 'mspace', {'width': '0.167em'})
+
+for matrix in MATRICES:
+    COMMANDS[matrix] = (1, 'mtable', {})

+ 226 - 0
main_clear/latex2maple/converter.py

@@ -0,0 +1,226 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2016-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __license__ = "MIT"
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+import re
+import xml.etree.cElementTree as eTree
+from xml.sax.saxutils import unescape
+from copy import deepcopy, copy
+from latex2maple.aggregator import aggregate
+from latex2maple.commands import MATRICES, COMMANDS
+from latex2maple.symbols_parser import convert_symbol
+
+
+def convert(latex):
+    math = ''
+    # 先加一个 mrow
+    row = []
+    latex = aggregate(latex)
+    remove_excess(latex)
+    print(latex)
+    _classify_subgroup(latex, row)
+    return row
+
+
+def _classify_subgroup(elements, row):
+    # 对列表进行操作
+    # elements:latex
+    iterable = iter(range(len(elements)))
+    for i in iterable:
+        element = elements[i]
+        if isinstance(element, list):
+            # 遇到一个list 加一个 mrow
+            _row = ''
+            _classify_subgroup(element, _row)
+        elif element in COMMANDS:
+            _convert_command(element, elements, i, iterable, row)
+        else:
+            _classify(element, row)
+
+
+def _convert_command(element, elements, index, iterable, parent):
+    # 对特殊符号进行操作
+    _get_prefix_element(element, parent)
+    # 先得到关键词信息
+    params, tag, attributes = COMMANDS[element]
+    # 得到一个主列表
+    new_parent = [tag]
+
+    for j in range(params): # 需要的元素数
+        index += 1
+        param = elements[index] #拿到一个元素
+        print('else', param)
+        if isinstance(param, list): # 如果是一个list
+            '''
+            主元素后面添加对应属性
+            '''
+            print(new_parent, param, 'xxxx')
+            _parent = parent
+            # _parent.append(new_parent)
+            _classify_subgroup(param, _parent)
+        else:
+            '这就要求只有特殊的是list 其余的都是str'
+            _classify(param, new_parent)
+    [next(iterable) for _ in range(params)]
+
+
+def _classify(_element, parent):
+    # 对最后的str进行操作
+    if isinstance(parent, list) and len(parent) > 0 and isinstance(parent[-1], list):
+
+        parent[-1] += _element
+    else:
+        parent += _element
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+def _remove_excess(iter):
+    if isinstance(iter, list):
+        if len(iter) == 1 and isinstance(iter[0], list):
+            iter = iter[0]
+            return _remove_excess(iter)
+    return iter
+
+
+def remove_excess(iter):
+    for i, j in enumerate(iter):
+        x = _remove_excess(j)
+        iter[i] = x
+        if isinstance(j, list):
+            remove_excess(j)
+
+
+def _convert(tree):
+    xml_string = eTree.tostring(tree)
+    try:
+        return unescape(xml_string)
+    except TypeError:
+        return unescape(xml_string.decode('utf-8'))
+
+
+def _convert_matrix_content(param, parent, alignment=None):
+    for row in param:
+        mtr = eTree.SubElement(parent, 'mtr')
+        iterable = iter(range(len(row)))
+        for i in iterable:
+            element = row[i]
+            if alignment:
+                column_align = {'r': 'right', 'l': 'left', 'c': 'center'}.get(alignment)
+                mtd = eTree.SubElement(mtr, 'mtd', columnalign=column_align)
+            else:
+                mtd = eTree.SubElement(mtr, 'mtd')
+            if isinstance(element, list):
+                _classify_subgroup(element, mtd)
+            elif element in COMMANDS:
+                _convert_command(element, row, i, iterable, mtd)
+            else:
+                _classify(element, mtd)
+
+
+def _convert_array_content(param, parent, alignment=None):
+    if '|' in alignment:
+        _alignment, columnlines = [], []
+        for i in alignment:
+            if i == '|':
+                columnlines.append('solid')
+            else:
+                _alignment.append(i)
+            if len(_alignment) - len(columnlines) == 2:
+                columnlines.append('none')
+        parent.attrib['columnlines'] = ' '.join(columnlines)
+    else:
+        _alignment = list(alignment)
+    rowlines = []
+    row_count = 0
+    for row in param:
+        row_count += 1
+        mtr = eTree.SubElement(parent, 'mtr')
+        iterable = iter(range(len(row)))
+        index = 0
+        has_rowline = False
+        for i in iterable:
+            element = row[i]
+            if element == r'\hline' and row_count > 1:
+                rowlines.append('solid')
+                has_rowline = True
+                continue
+            try:
+                align = _alignment[index]
+            except IndexError:
+                align = None
+            if align:
+                # noinspection PyTypeChecker
+                column_align = {'r': 'right', 'l': 'left', 'c': 'center'}.get(align)
+                mtd = eTree.SubElement(mtr, 'mtd', columnalign=column_align)
+            else:
+                mtd = eTree.SubElement(mtr, 'mtd')
+            if isinstance(element, list):
+                _classify_subgroup(element, mtd)
+            elif element in COMMANDS:
+                _convert_command(element, row, i, iterable, mtd)
+            else:
+                _classify(element, mtd)
+            index += 1
+        if not has_rowline and row_count > 1:
+            rowlines.append('none')
+    if 'solid' in rowlines:
+        parent.set('rowlines', ' '.join(rowlines))
+
+
+def _get_prefix_element(element, row):
+    if element in (r'\binom', r'\pmatrix'):
+        _convert_and_append_operator(r'\lparen', row)
+    elif element == r'\bmatrix':
+        _convert_and_append_operator(r'\lbrack', row)
+    elif element == r'\Bmatrix':
+        _convert_and_append_operator(r'\lbrace', row)
+    elif element == r'\vmatrix':
+        _convert_and_append_operator(r'\vert', row)
+    elif element == r'\Vmatrix':
+        _convert_and_append_operator(r'\Vert', row)
+
+
+def _convert_and_append_operator(symbol, parent):
+    symbol = convert_symbol(symbol)
+    mo = eTree.SubElement(parent, 'mo')
+    mo.text = '&#x{};'.format(symbol)
+
+
+def _get_postfix_element(element, row):
+    if element in (r'\binom', r'\pmatrix'):
+        _convert_and_append_operator(r'\rparen', row)
+    elif element == r'\bmatrix':
+        _convert_and_append_operator(r'\rbrack', row)
+    elif element == r'\Bmatrix':
+        _convert_and_append_operator(r'\rbrace', row)
+    elif element == r'\vmatrix':
+        _convert_and_append_operator(r'\vert', row)
+    elif element == r'\Vmatrix':
+        _convert_and_append_operator(r'\Vert', row)

+ 18 - 0
main_clear/latex2maple/exceptions.py

@@ -0,0 +1,18 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2018-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+
+
+class EmptyGroupError(Exception):
+    pass
+
+
+class NumeratorNotFoundError(Exception):
+    pass
+
+
+class DenominatorNotFoundError(Exception):
+    pass

+ 164 - 0
main_clear/latex2maple/latex2maple.py

@@ -0,0 +1,164 @@
+from .aggregator import aggregate
+from .commands import MATRICES, COMMANDS
+from .symbols_parser import convert_symbol
+from .preprocessing import format_latex, last_clear
+from warnings import warn
+
+
+def _convert_command(key, num, params):
+
+    if key == r'\frac':
+        fz, fm = convert_symbol(params[0]), convert_symbol(params[1])
+        fz = '(%s)' % (fz) if len(fz) > 1 else fz
+        fm = '(%s)' % (fm) if len(fm) > 1 else fm
+        # s = '%s/%s' % (fz, fm) if len(fz) == 1 and len(fm) == 1 else '(%s/%s)' % (fz, fm)
+        s =  '(%s/%s)' % (fz, fm)
+    elif key == r'\sqrt':
+        s = 'sqrt(%s)' % (convert_symbol(params[0]))
+    elif key == r'_':
+        if r'\log' in params or r'log' in params:  # or r'\ln' in params or  r'\lg' in params:
+            s = '%s[%s]' % (convert_symbol(params[0]), convert_symbol(params[1]))
+        else:
+            s = '%s__%s' % (convert_symbol(params[0]), convert_symbol(params[1]))
+    elif key == r'^':
+        s = '%s^(%s)' % (convert_symbol(params[0]), convert_symbol(params[1])) if len(
+            convert_symbol(params[1])) > 1 else '%s^%s' % (convert_symbol(params[0]), convert_symbol(params[1]))
+    elif key == r'\right':
+        s = convert_symbol(params[0]) if params[0] != '.' else ''
+    elif key == r'\left':
+        s = convert_symbol(params[0]) if params[0] != '.' else ''
+    elif key == r'\text':
+        s = '%s' % (convert_symbol(params[0]))
+
+    elif key == r'\overrightarrow':
+        s = '<%s>' % (convert_symbol(params[0]))
+    elif key == r'\overrightarrowm':
+        s = '<%s>' % (convert_symbol(params[0]))
+
+    elif key == r'\overline':
+        s = '一拔(%s)' % (convert_symbol(params[0]))
+
+
+    elif key == r'\root':
+        s = 'root%s(%s)' % (convert_symbol(params[1]),convert_symbol(params[0]))
+
+
+    elif not num:
+        s = ''
+    else:
+        s = '%s(%s)' % (key, convert_symbol(params[0]))
+    return s
+
+
+def convert_command(element):
+    # 对特殊符号进行操作
+    try:
+
+        rs = ''
+        element = [i for i in element if i]
+        # 先得到关键词信息
+        iterable = iter(range(len(element)))
+        for i in iterable:
+            params = []
+            if element[i] in COMMANDS:
+                key = element[i]
+                param_num, tag, attributes = COMMANDS[element[i]]
+                for _ in range(param_num):
+                    i += 1
+                    params.append(element[i])
+                s = _convert_command(key, param_num, params)
+                rs += s
+                [next(iterable) for _ in range(param_num)]
+            else:
+                rs += convert_symbol(element[i])
+        return rs
+    except:
+        # tjt修改
+        warn('COMMANDS warn')
+        command_res = ''.join(element)
+        if len(command_res) > 0 and command_res[0] == '^':
+            command_res = command_res[1:]
+        return command_res
+        # return ''.join(element)
+
+
+def clear_leaves(iters):
+    iterable = iter(range(len(iters)))
+    for i in iterable:
+        if isinstance(iters[i], list):
+            iters[i] = convert_command(iters[i])
+        else:
+            iters[i] = iters[i]
+    return iters
+
+
+def leaves(iter):
+    if height(iter) == 3:
+        return clear_leaves(iter)
+    for i in range(len(iter)):
+        if height(iter[i]) == 3:
+            iter[i] = clear_leaves(iter[i])
+        elif height(iter[i]) > 3:
+            leaves(iter[i])
+    else:
+        leaves(iter)
+
+
+def height(self):
+    max_child_height = 0
+    for child in self:
+        if isinstance(child, list):
+            max_child_height = max(max_child_height, height(child))
+        else:
+            max_child_height = max(max_child_height, 1)
+
+    return max_child_height + 1
+
+
+def _remove_excess(iter):
+    if isinstance(iter, list):
+        if len(iter) == 1 and isinstance(iter[0], list):
+            iter = iter[0]
+            return _remove_excess(iter)
+    return iter
+
+
+def remove_excess(iter):
+    for i, j in enumerate(iter):
+        x = _remove_excess(j)
+        iter[i] = x
+        if isinstance(j, list):
+            remove_excess(j)
+
+
+def convert(latex):
+    math = ''
+    # 先加一个 mrow
+
+    latex = aggregate(latex)
+    remove_excess(latex)
+
+    return [latex]
+
+
+def structured(latex):
+    if latex=='\[\]' or latex=='' or latex=='$$':
+        return ''
+    latex= format_latex(latex)
+    li = convert(latex)
+    # tjt修改
+    if str(li).replace('[','').replace(']',''):
+        leaves(li)
+    else:
+        # raise RecursionError
+        warn('RecursionError warn')
+        latex = latex.strip()
+        if latex != '' and latex[0]+latex[-1] in {'[]','{}'}:
+            latex = latex[1:-1]
+        return latex
+    return last_clear(convert_command(li))
+
+
+if __name__ == '__main__':
+    print(structured(
+        r'$z = \left( {{m^2} - 5m + 6} \right) + \left( {m - 3} \right)i$'))

Tiedoston diff-näkymää rajattu, sillä se on liian suuri
+ 417 - 0
main_clear/latex2maple/preprocessing.py


+ 45 - 0
main_clear/latex2maple/symbols_parser.py

@@ -0,0 +1,45 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2016-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __license__ = "MIT"
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+import codecs
+import os
+import re
+
+symbols_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'unimathsymbols.txt')
+symbols = None
+
+
+def convert_symbol(symbol):
+    #单字母标号
+    global symbols
+    if not symbols:
+        symbols = parse_symbols()
+    # tjt修改
+    symbol_parse = symbols.get(symbol, symbol)
+    if symbol_parse == symbol and symbol[0] == "\\":
+        symbol_parse = ""
+    return symbol_parse
+    # return symbols.get(symbol, symbol)
+
+
+def parse_symbols():
+    _symbols = {}
+    with codecs.open(symbols_file, encoding='utf-8') as f:
+        for line in f:
+            if not line.startswith('#'):
+                columns = line.strip().split('^')
+                _unicode = columns[1]
+                latex = columns[2]
+                unicode_math = columns[3]
+                if latex and latex not in _symbols:
+                    _symbols[latex] = _unicode
+                if unicode_math and unicode_math not in _symbols:
+                    _symbols[unicode_math] = _unicode
+                for equivalent in re.findall(r'=\s+(\\[^,^ ]+),?', columns[-1]):
+                    if equivalent not in _symbols:
+                        _symbols[equivalent] = _unicode
+    return _symbols

+ 90 - 0
main_clear/latex2maple/tokenizer.py

@@ -0,0 +1,90 @@
+#!/usr/bin/env python
+# __author__ = "Ronie Martinez"
+# __copyright__ = "Copyright 2018-2019, Ronie Martinez"
+# __credits__ = ["Ronie Martinez"]
+# __maintainer__ = "Ronie Martinez"
+# __email__ = "ronmarti18@gmail.com"
+
+
+def tokenize(data):
+    iterable = iter(data)
+    buffer = ''
+    while True:
+        try:
+            char = next(iterable)
+            if char == '\\':
+                if buffer == '\\':
+                    yield buffer + char
+                    buffer = ''
+                    continue
+                elif len(buffer):
+                    yield buffer
+                buffer = char
+                try:
+                    buffer += next(iterable)
+                except StopIteration:
+                    break
+            elif char.isalpha():
+                if len(buffer):
+                    if buffer.endswith('}'):
+                        yield buffer
+                        yield char
+                        buffer = ''
+                    elif buffer.startswith('\\'):
+                        buffer += char
+                else:
+                    yield char
+            elif char.isdigit():
+                if len(buffer):
+                    yield buffer
+                buffer = char
+                while True:
+                    try:
+                        char = next(iterable)
+                    except StopIteration:
+                        break
+                    if char.isspace():
+                        yield buffer
+                        buffer = ''
+                        break
+                    elif char.isdigit() or char == '.':
+                        buffer += char
+                    else:
+                        if buffer.endswith('.'):
+                            yield buffer[:-1]
+                            yield buffer[-1]
+                        else:
+                            yield buffer
+                        buffer = ''
+                        if char == '\\':
+                            buffer = char
+                        else:
+                            yield char
+                        break
+            elif char.isspace():
+                if len(buffer):
+                    yield buffer
+                    buffer = ''
+            elif char in '{}*':
+                if buffer.startswith(r'\begin') or buffer.startswith(r'\end'):
+                    if buffer.endswith('}'):
+                        yield buffer
+                        yield char
+                        buffer = ''
+                    else:
+                        buffer += char
+                else:
+                    if len(buffer):
+                        yield buffer
+                        buffer = ''
+                    yield char
+            else:
+                if len(buffer):
+                    yield buffer
+                    buffer = ''
+                if len(char):
+                    yield char
+        except StopIteration:
+            break
+    if len(buffer):
+        yield buffer

+ 2877 - 0
main_clear/latex2maple/unimathsymbols.txt

@@ -0,0 +1,2877 @@
+# Unicode characters and corresponding LaTeX math mode commands
+# *************************************************************
+#
+# :Copyright: © 2011 Günter Milde
+# :Date:      Last revised 2011-11-08
+# :Licence:   This work may be distributed and/or modified under the
+#             conditions of the `LaTeX Project Public License`_,
+#             either version 1.3 of this license or (at your option)
+#             any later version.
+#
+# .. _LaTeX Project Public License: http://www.latex-project.org/lppl.txt
+#
+# This is a mapping of mathematical Unicode characters to corresponding
+# (La)TeX commands.
+#
+# While the contents of this file represent the best information
+# available to the author as of the date referenced above, it
+# contains omissions and maybe errors. It is likely that the
+# information in this file will change from time to time.
+#
+# The character encoding of the file is UTF-8.
+#
+# Each data record consists of 8 fields. Fields are delimited by “^”.
+# Spaces adjacent to the delimiter are not significant. The number and
+# type of fields in this file may change in future versions.
+#
+# 1. code point (Unicode character number)
+#
+#    The code point field is unique.
+#
+# 2. literal character (UTF-8 encoded)
+#
+# 3. (La)TeX _`command`
+#
+#    Preferred representation of the character in TeX.
+#    Alternative commands are listed in the comments_ field.
+#
+# 4. command used by the `unicode-math`_ package
+#
+#    .. _unicode-math:
+#       http://mirror.ctan.org/help/Catalogue/entries/unicode-math.html
+#
+# 5. Unicode math character class (after MathClassEx_).
+#
+#    .. _MathClassEx:
+#       http://www.unicode.org/Public/math/revision-11/MathClassEx-11.txt
+#
+#    The class can be one of:
+#
+#    :N: Normal- includes all digits and symbols requiring only one form
+#    :A: Alphabetic
+#    :B: Binary
+#    :C: Closing – usually paired with opening delimiter
+#    :D: Diacritic
+#    :F: Fence - unpaired delimiter (often used as opening or closing)
+#    :G: Glyph_Part- piece of large operator
+#    :L: Large -n-ary or Large operator, often takes limits
+#    :O: Opening – usually paired with closing delimiter
+#    :P: Punctuation
+#    :R: Relation- includes arrows
+#    :S: Space
+#    :U: Unary – operators that are only unary
+#    :V: Vary – operators that can be unary or binary depending on context
+#    :X: Special –characters not covered by other classes
+#
+#    C, O, and F operators are stretchy. In addition some binary
+#    operators, such as 002F are stretchy as noted in the descriptive
+#    comments. The classes are also useful in determining extra spacing
+#    around the operators as discussed in UTR#25.
+#
+# 6. TeX math category (after unimath-symbols_)
+#
+#    .. _unimath-symbols:
+#       http://mirror.ctan.org/macros/latex/contrib/unicode-math/unimath-symbols.pdf
+#
+# 7. requirements and conflicts
+#
+#    Space delimited list of LaTeX packages or features [1]_ providing
+#    the LaTeX command_ or conflicting with it.
+#
+#    Packages/features preceded by a HYPHEN-MINUS (-) use the command
+#    for a different symbol.
+#
+#    To save space, packages providing/modifying (almost) all commands
+#    of a feature or another package are not listed here but in the
+#    ``packages.txt`` file.
+#
+#    .. [1] A feature can be a set of commands common to several packages,
+#    	    (e.g. ``mathbb`` or ``slantedGreek``) or a constraint (e.g.
+#	    ``literal`` mapping plain characters to upright face).
+#
+# 8. descriptive _`comments`
+#
+#    The descriptive comments provide more information about the
+#    character, or its specific appearance or use.
+#
+#    Some descriptions contain references to related commands,
+#    marked by a character describing the relation
+#
+#    :=:  equals  (alias commands),
+#    :#:  approx  (similar, different character with same glyph),
+#    :x:  not     (false friends and name clashes),
+#    :t:  text    (text mode command),
+#
+#    followed by requirements in parantheses, and
+#    delimited by commas.
+#
+#    Comments in UPPERCASE are Unicode character names
+#
+# no.^chr^LaTeX^unicode-math^cls^category^requirements^comments
+00021^!^!^\exclam^N^mathpunct^^EXCLAMATION MARK
+00023^#^\#^\octothorpe^N^mathord^-oz^# \# (oz), NUMBER SIGN
+00024^$^\$^\mathdollar^N^mathord^^= \mathdollar, DOLLAR SIGN
+00025^%^\%^\percent^N^mathord^^PERCENT SIGN
+00026^&^\&^\ampersand^N^mathord^^# \binampersand (stmaryrd)
+00028^(^(^\lparen^O^mathopen^^LEFT PARENTHESIS
+00029^)^)^\rparen^C^mathclose^^RIGHT PARENTHESIS
+0002A^*^*^^N^mathord^^# \ast, (high) ASTERISK, star
+0002B^+^+^\plus^V^mathbin^^PLUS SIGN
+0002C^,^,^\comma^P^mathpunct^^COMMA
+0002D^-^^^N^mathbin^^t -, HYPHEN-MINUS (deprecated for math)
+0002E^.^.^\period^P^mathalpha^^FULL STOP, period
+0002F^/^/^\mathslash^B^mathord^^# \slash, SOLIDUS
+00030^0^0^^N^mathord^^DIGIT ZERO
+00031^1^1^^N^mathord^^DIGIT ONE
+00032^2^2^^N^mathord^^DIGIT TWO
+00033^3^3^^N^mathord^^DIGIT THREE
+00034^4^4^^N^mathord^^DIGIT FOUR
+00035^5^5^^N^mathord^^DIGIT FIVE
+00036^6^6^^N^mathord^^DIGIT SIX
+00037^7^7^^N^mathord^^DIGIT SEVEN
+00038^8^8^^N^mathord^^DIGIT EIGHT
+00039^9^9^^N^mathord^^DIGIT NINE
+0003A^:^:^\mathcolon^P^mathpunct^-literal^= \colon (literal), COLON (not ratio)
+0003B^;^;^\semicolon^P^mathpunct^^SEMICOLON p:
+0003C^<^<^\less^R^mathrel^^LESS-THAN SIGN r:
+0003D^=^=^\equal^R^mathrel^^EQUALS SIGN r:
+0003E^>^>^\greater^R^mathrel^^GREATER-THAN SIGN r:
+0003F^?^?^\question^P^mathord^^QUESTION MARK
+00040^@^@^\atsign^N^mathord^^at
+00041^A^A^^A^mathalpha^-literal^= \mathrm{A}, LATIN CAPITAL LETTER A
+00042^B^B^^A^mathalpha^-literal^= \mathrm{B}, LATIN CAPITAL LETTER B
+00043^C^C^^A^mathalpha^-literal^= \mathrm{C}, LATIN CAPITAL LETTER C
+00044^D^D^^A^mathalpha^-literal^= \mathrm{D}, LATIN CAPITAL LETTER D
+00045^E^E^^A^mathalpha^-literal^= \mathrm{E}, LATIN CAPITAL LETTER E
+00046^F^F^^A^mathalpha^-literal^= \mathrm{F}, LATIN CAPITAL LETTER F
+00047^G^G^^A^mathalpha^-literal^= \mathrm{G}, LATIN CAPITAL LETTER G
+00048^H^H^^A^mathalpha^-literal^= \mathrm{H}, LATIN CAPITAL LETTER H
+00049^I^I^^A^mathalpha^-literal^= \mathrm{I}, LATIN CAPITAL LETTER I
+0004A^J^J^^A^mathalpha^-literal^= \mathrm{J}, LATIN CAPITAL LETTER J
+0004B^K^K^^A^mathalpha^-literal^= \mathrm{K}, LATIN CAPITAL LETTER K
+0004C^L^L^^A^mathalpha^-literal^= \mathrm{L}, LATIN CAPITAL LETTER L
+0004D^M^M^^A^mathalpha^-literal^= \mathrm{M}, LATIN CAPITAL LETTER M
+0004E^N^N^^A^mathalpha^-literal^= \mathrm{N}, LATIN CAPITAL LETTER N
+0004F^O^O^^A^mathalpha^-literal^= \mathrm{O}, LATIN CAPITAL LETTER O
+00050^P^P^^A^mathalpha^-literal^= \mathrm{P}, LATIN CAPITAL LETTER P
+00051^Q^Q^^A^mathalpha^-literal^= \mathrm{Q}, LATIN CAPITAL LETTER Q
+00052^R^R^^A^mathalpha^-literal^= \mathrm{R}, LATIN CAPITAL LETTER R
+00053^S^S^^A^mathalpha^-literal^= \mathrm{S}, LATIN CAPITAL LETTER S
+00054^T^T^^A^mathalpha^-literal^= \mathrm{T}, LATIN CAPITAL LETTER T
+00055^U^U^^A^mathalpha^-literal^= \mathrm{U}, LATIN CAPITAL LETTER U
+00056^V^V^^A^mathalpha^-literal^= \mathrm{V}, LATIN CAPITAL LETTER V
+00057^W^W^^A^mathalpha^-literal^= \mathrm{W}, LATIN CAPITAL LETTER W
+00058^X^X^^A^mathalpha^-literal^= \mathrm{X}, LATIN CAPITAL LETTER X
+00059^Y^Y^^A^mathalpha^-literal^= \mathrm{Y}, LATIN CAPITAL LETTER Y
+0005A^Z^Z^^A^mathalpha^-literal^= \mathrm{Z}, LATIN CAPITAL LETTER Z
+0005B^[^\lbrack^\lbrack^O^mathopen^^LEFT SQUARE BRACKET
+0005C^\^\backslash^\backslash^B^mathord^^REVERSE SOLIDUS
+0005D^]^\rbrack^\rbrack^C^mathclose^^RIGHT SQUARE BRACKET
+0005E^^\sphat^^N^mathord^amsxtra^CIRCUMFLEX ACCENT, TeX superscript operator
+0005F^_^\_^^N^mathord^^LOW LINE, TeX subscript operator
+00060^`^^^D^mathord^^grave, alias for 0300
+00061^a^a^^A^mathalpha^-literal^= \mathrm{a}, LATIN SMALL LETTER A
+00062^b^b^^A^mathalpha^-literal^= \mathrm{b}, LATIN SMALL LETTER B
+00063^c^c^^A^mathalpha^-literal^= \mathrm{c}, LATIN SMALL LETTER C
+00064^d^d^^A^mathalpha^-literal^= \mathrm{d}, LATIN SMALL LETTER D
+00065^e^e^^A^mathalpha^-literal^= \mathrm{e}, LATIN SMALL LETTER E
+00066^f^f^^A^mathalpha^-literal^= \mathrm{f}, LATIN SMALL LETTER F
+00067^g^g^^A^mathalpha^-literal^= \mathrm{g}, LATIN SMALL LETTER G
+00068^h^h^^A^mathalpha^-literal^= \mathrm{h}, LATIN SMALL LETTER H
+00069^i^i^^A^mathalpha^-literal^= \mathrm{i}, LATIN SMALL LETTER I
+0006A^j^j^^A^mathalpha^-literal^= \mathrm{j}, LATIN SMALL LETTER J
+0006B^k^k^^A^mathalpha^-literal^= \mathrm{k}, LATIN SMALL LETTER K
+0006C^l^l^^A^mathalpha^-literal^= \mathrm{l}, LATIN SMALL LETTER L
+0006D^m^m^^A^mathalpha^-literal^= \mathrm{m}, LATIN SMALL LETTER M
+0006E^n^n^^A^mathalpha^-literal^= \mathrm{n}, LATIN SMALL LETTER N
+0006F^o^o^^A^mathalpha^-literal^= \mathrm{o}, LATIN SMALL LETTER O
+00070^p^p^^A^mathalpha^-literal^= \mathrm{p}, LATIN SMALL LETTER P
+00071^q^q^^A^mathalpha^-literal^= \mathrm{q}, LATIN SMALL LETTER Q
+00072^r^r^^A^mathalpha^-literal^= \mathrm{r}, LATIN SMALL LETTER R
+00073^s^s^^A^mathalpha^-literal^= \mathrm{s}, LATIN SMALL LETTER S
+00074^t^t^^A^mathalpha^-literal^= \mathrm{t}, LATIN SMALL LETTER T
+00075^u^u^^A^mathalpha^-literal^= \mathrm{u}, LATIN SMALL LETTER U
+00076^v^v^^A^mathalpha^-literal^= \mathrm{v}, LATIN SMALL LETTER V
+00077^w^w^^A^mathalpha^-literal^= \mathrm{w}, LATIN SMALL LETTER W
+00078^x^x^^A^mathalpha^-literal^= \mathrm{x}, LATIN SMALL LETTER X
+00079^y^y^^A^mathalpha^-literal^= \mathrm{y}, LATIN SMALL LETTER Y
+0007A^z^z^^A^mathalpha^-literal^= \mathrm{z}, LATIN SMALL LETTER Z
+0007B^{^\{^\lbrace^O^mathopen^^= \lbrace, LEFT CURLY BRACKET
+0007C^|^|^\vert^F^mathfence^^= \vert, vertical bar
+0007D^}^\}^\rbrace^C^mathclose^^= \rbrace, RIGHT CURLY BRACKET
+0007E^~^\sptilde^^N^mathord^amsxtra^# \sim, TILDE
+000A0^ ^~^^S^^^nbsp
+000A1^¡^^^P^^^iexcl
+000A2^¢^\cent^^N^mathord^wasysym^= \mathcent (txfonts), cent
+000A3^£^\pounds^\sterling^N^mathord^-fourier -omlmathit^= \mathsterling (txfonts), POUND SIGN, fourier prints a dollar sign
+000A4^¤^^^N^mathord^^t \currency (wasysym), curren
+000A5^¥^\yen^\yen^N^mathord^amsfonts^YEN SIGN
+000A6^¦^^^N^mathord^^brvbar (vertical)
+000A7^§^^^N^mathord^^sect
+000A8^¨^\spddot^^D^mathord^amsxtra^Dot /die, alias for 0308
+000AC^¬^\neg^\neg^U^mathord^^= \lnot, NOT SIGN
+000AE^®^\circledR^^X^mathord^amsfonts^REGISTERED SIGN
+000AF^¯^^^D^mathord^^macr, alias for 0304
+000B0^°^^^N^mathord^^deg
+000B1^±^\pm^\pm^V^mathbin^^plus-or-minus sign
+000B2^²^^^N^mathord^^sup2
+000B3^³^^^N^mathord^^sup3
+000B4^´^^^N^mathord^^acute, alias for 0301
+000B5^µ^\Micro^^N^mathalpha^wrisym^= \tcmu (mathcomp), t \textmu (textcomp), # \mathrm{\mu} (omlmathrm), # \muup (kpfonts mathdesign), MICRO SIGN
+000B6^¶^^^N^mathord^^para (paragraph sign, pilcrow)
+000B7^·^^\cdotp^B^mathbin^^# \cdot, x \centerdot, b: MIDDLE DOT
+000B9^¹^^^N^mathord^^sup1
+000BC^¼^^^N^mathord^^frac14
+000BD^½^^^N^mathord^^frac12
+000BE^¾^^^N^mathord^^frac34
+000BF^¿^^^P^^^iquest
+000D7^×^\times^\times^B^mathbin^^MULTIPLICATION SIGN, z notation Cartesian product
+000F0^ð^\eth^\matheth^^mathalpha^amssymb arevmath^eth
+000F7^÷^\div^\div^B^mathbin^^divide sign
+00131^ı^\imath^^A^mathalpha^-literal^imath
+001B5^Ƶ^^\Zbar^^mathord^^impedance
+00237^ȷ^\jmath^^A^mathalpha^-literal^jmath
+002C6^ˆ^^^D^mathalpha^^circ, alias for 0302
+002C7^ˇ^^^D^mathalpha^^CARON, alias for 030C
+002D8^˘^^^D^mathord^^BREVE, alias for 0306
+002D9^˙^^^D^mathord^^dot, alias for 0307
+002DA^˚^^^D^mathord^^ring, alias for 030A
+002DC^˜^^^D^mathord^^tilde, alias for 0303
+00300^x̀^\grave^\grave^D^mathaccent^^grave accent
+00301^x́^\acute^\acute^D^mathaccent^^acute accent
+00302^x̂^\hat^\hat^D^mathaccent^^# \widehat (amssymb), circumflex accent
+00303^x̃^\tilde^\tilde^D^mathaccent^^# \widetilde (yhmath, fourier), tilde
+00304^x̄^\bar^\bar^D^mathaccent^^macron
+00305^x̅^\overline^\overbar^D^mathaccent^^overbar embellishment
+00306^x̆^\breve^\breve^D^mathaccent^^breve
+00307^ẋ^\dot^\dot^D^mathaccent^-oz^= \Dot (wrisym), dot above
+00308^ẍ^\ddot^\ddot^D^mathaccent^^= \DDot (wrisym), dieresis
+00309^x̉^^\ovhook^^mathaccent^^COMBINING HOOK ABOVE
+0030A^x̊^\mathring^\ocirc^D^mathaccent^amssymb^= \ring (yhmath), ring
+0030C^x̌^\check^\check^D^mathaccent^^caron
+00310^x̐^^\candra^^mathaccent^^candrabindu (non-spacing)
+00311^x̑^^^D^mathaccent^^COMBINING INVERTED BREVE
+00312^x̒^^\oturnedcomma^^mathaccent^^COMBINING TURNED COMMA ABOVE
+00315^x̕^^\ocommatopright^^mathaccent^^COMBINING COMMA ABOVE RIGHT
+0031A^x̚^^\droang^^mathaccent^^left angle above (non-spacing)
+00323^x̣^^^D^mathaccent^^COMBINING DOT BELOW
+0032C^x̬^^^D^mathaccent^^COMBINING CARON BELOW
+0032D^x̭^^^D^mathaccent^^COMBINING CIRCUMFLEX ACCENT BELOW
+0032E^x̮^^^D^mathaccent^^COMBINING BREVE BELOW
+0032F^x̯^^^D^mathaccent^^COMBINING INVERTED BREVE BELOW
+00330^x̰^\utilde^\wideutilde^D^mathaccent^undertilde^under tilde accent (multiple characters and non-spacing)
+00331^x̱^\underbar^\underbar^D^mathaccent^^COMBINING MACRON BELOW
+00332^x̲^\underline^^D^mathaccent^^COMBINING LOW LINE
+00333^x̳^^^D^mathaccent^^2lowbar
+00338^x̸^\not^\not^D^mathaccent^^COMBINING LONG SOLIDUS OVERLAY
+0033A^x̺^^^D^mathaccent^^COMBINING INVERTED BRIDGE BELOW
+0033F^x̿^^^D^mathaccent^^COMBINING DOUBLE OVERLINE
+00346^x͆^^^D^mathaccent^^COMBINING BRIDGE ABOVE
+00391^Α^^\upAlpha^A^mathalpha^^capital alpha, greek
+00392^Β^^\upBeta^A^mathalpha^^capital beta, greek
+00393^Γ^\Gamma^\upGamma^A^mathalpha^-literal^= \Gamma (-slantedGreek), = \mathrm{\Gamma}, capital gamma, greek
+00394^Δ^\Delta^\upDelta^A^mathalpha^-literal^= \Delta (-slantedGreek), = \mathrm{\Delta}, capital delta, greek
+00395^Ε^^\upEpsilon^A^mathalpha^^capital epsilon, greek
+00396^Ζ^^\upZeta^A^mathalpha^^capital zeta, greek
+00397^Η^^\upEta^A^mathalpha^^capital eta, greek
+00398^Θ^\Theta^\upTheta^A^mathalpha^-literal^= \Theta (-slantedGreek), = \mathrm{\Theta}, capital theta, greek
+00399^Ι^^\upIota^A^mathalpha^^capital iota, greek
+0039A^Κ^^\upKappa^A^mathalpha^^capital kappa, greek
+0039B^Λ^\Lambda^\upLambda^A^mathalpha^-literal^= \Lambda (-slantedGreek), = \mathrm{\Lambda}, capital lambda, greek
+0039C^Μ^^\upMu^A^mathalpha^^capital mu, greek
+0039D^Ν^^\upNu^A^mathalpha^^capital nu, greek
+0039E^Ξ^\Xi^\upXi^A^mathalpha^-literal^= \Xi (-slantedGreek), = \mathrm{\Xi}, capital xi, greek
+0039F^Ο^^\upOmicron^A^mathalpha^^capital omicron, greek
+003A0^Π^\Pi^\upPi^A^mathalpha^-literal^= \Pi (-slantedGreek), = \mathrm{\Pi}, capital pi, greek
+003A1^Ρ^^\upRho^A^mathalpha^^capital rho, greek
+003A3^Σ^\Sigma^\upSigma^A^mathalpha^-literal^= \Sigma (-slantedGreek), = \mathrm{\Sigma}, capital sigma, greek
+003A4^Τ^^\upTau^A^mathalpha^^capital tau, greek
+003A5^Υ^\Upsilon^\upUpsilon^A^mathalpha^-literal^= \Upsilon (-slantedGreek), = \mathrm{\Upsilon}, capital upsilon, greek
+003A6^Φ^\Phi^\upPhi^A^mathalpha^-literal^= \Phi (-slantedGreek), = \mathrm{\Phi}, capital phi, greek
+003A7^Χ^^\upChi^A^mathalpha^^capital chi, greek
+003A8^Ψ^\Psi^\upPsi^A^mathalpha^-literal^= \Psi (-slantedGreek), = \mathrm{\Psi}, capital psi, greek
+003A9^Ω^\Omega^\upOmega^A^mathalpha^-literal^= \Omega (-slantedGreek), = \mathrm{\Omega}, capital omega, greek
+003B1^α^\alpha^\upalpha^A^mathalpha^-literal^= \mathrm{\alpha} (omlmathrm), = \alphaup (kpfonts mathdesign), = \upalpha (upgreek), alpha, greek
+003B2^β^\beta^\upbeta^A^mathalpha^-literal^= \mathrm{\beta} (omlmathrm), = \betaup (kpfonts mathdesign), = \upbeta (upgreek), beta, greek
+003B3^γ^\gamma^\upgamma^A^mathalpha^-literal^= \mathrm{\gamma} (omlmathrm), = \gammaup (kpfonts mathdesign), = \upgamma (upgreek), gamma, greek
+003B4^δ^\delta^\updelta^A^mathalpha^-literal^= \mathrm{\delta} (omlmathrm), = \deltaup (kpfonts mathdesign), = \updelta (upgreek), delta, greek
+003B5^ε^\varepsilon^\upepsilon^A^mathalpha^-literal^= \mathrm{\varepsilon} (omlmathrm), = \varepsilonup (kpfonts mathdesign), = \upepsilon (upgreek), rounded epsilon, greek
+003B6^ζ^\zeta^\upzeta^A^mathalpha^-literal^= \mathrm{\zeta} (omlmathrm), = \zetaup (kpfonts mathdesign), = \upzeta (upgreek), zeta, greek
+003B7^η^\eta^\upeta^A^mathalpha^-literal^= \mathrm{\eta} (omlmathrm), = \etaup (kpfonts mathdesign), = \upeta (upgreek), eta, greek
+003B8^θ^\theta^\uptheta^A^mathalpha^-literal^= \mathrm{\theta} (omlmathrm), = \thetaup (kpfonts mathdesign), straight theta, = \uptheta (upgreek), theta, greek
+003B9^ι^\iota^\upiota^A^mathalpha^-literal^= \mathrm{\iota} (omlmathrm), = \iotaup (kpfonts mathdesign), = \upiota (upgreek), iota, greek
+003BA^κ^\kappa^\upkappa^A^mathalpha^-literal^= \mathrm{\kappa} (omlmathrm), = \kappaup (kpfonts mathdesign), = \upkappa (upgreek), kappa, greek
+003BB^λ^\lambda^\uplambda^A^mathalpha^-literal^= \mathrm{\lambda} (omlmathrm), = \lambdaup (kpfonts mathdesign), = \uplambda (upgreek), lambda, greek
+003BC^μ^\mu^\upmu^A^mathalpha^-literal^= \mathrm{\mu} (omlmathrm), = \muup (kpfonts mathdesign), = \upmu (upgreek), mu, greek
+003BD^ν^\nu^\upnu^A^mathalpha^-literal^= \mathrm{\nu} (omlmathrm), = \nuup (kpfonts mathdesign), = \upnu (upgreek), nu, greek
+003BE^ξ^\xi^\upxi^A^mathalpha^-literal^= \mathrm{\xi} (omlmathrm), = \xiup (kpfonts mathdesign), = \upxi (upgreek), xi, greek
+003BF^ο^^\upomicron^A^mathalpha^^small omicron, greek
+003C0^π^\pi^\uppi^A^mathalpha^-literal^= \mathrm{\pi} (omlmathrm), = \piup (kpfonts mathdesign), = \uppi (upgreek), pi, greek
+003C1^ρ^\rho^\uprho^A^mathalpha^-literal^= \mathrm{\rho} (omlmathrm), = \rhoup (kpfonts mathdesign), = \uprho (upgreek), rho, greek
+003C2^ς^\varsigma^\upvarsigma^^mathalpha^-literal^= \mathrm{\varsigma} (omlmathrm), = \varsigmaup (kpfonts mathdesign), = \upvarsigma (upgreek), terminal sigma, greek
+003C3^σ^\sigma^\upsigma^A^mathalpha^-literal^= \mathrm{\sigma} (omlmathrm), = \sigmaup (kpfonts mathdesign), = \upsigma (upgreek), sigma, greek
+003C4^τ^\tau^\uptau^A^mathalpha^-literal^= \mathrm{\tau} (omlmathrm), = \tauup (kpfonts mathdesign), = \uptau (upgreek), tau, greek
+003C5^υ^\upsilon^\upupsilon^A^mathalpha^-literal^= \mathrm{\upsilon} (omlmathrm), = \upsilonup (kpfonts mathdesign), = \upupsilon (upgreek), upsilon, greek
+003C6^φ^\varphi^\upvarphi^A^mathalpha^-literal^= \mathrm{\varphi} (omlmathrm), = \varphiup (kpfonts mathdesign), = \upvarphi (upgreek), curly or open phi, greek
+003C7^χ^\chi^\upchi^A^mathalpha^-literal^= \mathrm{\chi} (omlmathrm), = \chiup (kpfonts mathdesign), = \upchi (upgreek), chi, greek
+003C8^ψ^\psi^\uppsi^A^mathalpha^-literal^= \mathrm{\psi} (omlmathrm), = \psiup (kpfonts mathdesign), = \uppsi (upgreek), psi, greek
+003C9^ω^\omega^\upomega^A^mathalpha^-literal^= \mathrm{\omega} (omlmathrm), = \omegaup (kpfonts mathdesign), = \upomega (upgreek), omega, greek
+003D0^ϐ^\varbeta^\upvarbeta^A^mathalpha^arevmath^rounded beta, greek
+003D1^ϑ^\vartheta^\upvartheta^A^mathalpha^-literal^= \mathrm{\vartheta} (omlmathrm), = \varthetaup (kpfonts mathdesign), curly or open theta
+003D2^ϒ^^\upUpsilon^A^mathalpha^^# \mathrm{\Upsilon}, GREEK UPSILON WITH HOOK SYMBOL
+003D5^ϕ^\phi^\upphi^A^mathalpha^-literal^= \mathrm{\phi} (omlmathrm), = \phiup (kpfonts mathdesign), GREEK PHI SYMBOL (straight)
+003D6^ϖ^\varpi^\upvarpi^A^mathalpha^-literal^= \mathrm{\varpi} (omlmathrm), = \varpiup (kpfonts mathdesign), GREEK PI SYMBOL (pomega)
+003D8^Ϙ^\Qoppa^\upoldKoppa^N^mathord^arevmath^= \Koppa (wrisym), t \Qoppa (LGR), GREEK LETTER ARCHAIC KOPPA
+003D9^ϙ^\qoppa^\upoldkoppa^N^mathord^arevmath^= \koppa (wrisym), t \qoppa (LGR), GREEK SMALL LETTER ARCHAIC KOPPA
+003DA^Ϛ^\Stigma^\upStigma^A^mathalpha^arevmath wrisym^capital stigma
+003DB^ϛ^\stigma^\upstigma^A^mathalpha^arevmath wrisym^GREEK SMALL LETTER STIGMA
+003DC^Ϝ^\Digamma^\upDigamma^A^mathalpha^wrisym -amssymb^= \digamma (amssymb), capital digamma
+003DD^ϝ^\digamma^\updigamma^A^mathalpha^arevmath wrisym^GREEK SMALL LETTER DIGAMMA
+003DE^Ϟ^\Koppa^\upKoppa^^mathalpha^arevmath^capital koppa
+003DF^ϟ^\koppa^\upkoppa^^mathalpha^arevmath^GREEK SMALL LETTER KOPPA
+003E0^Ϡ^\Sampi^\upSampi^A^mathalpha^arevmath wrisym^capital sampi
+003E1^ϡ^\sampi^\upsampi^A^mathalpha^arevmath^# \sampi (wrisym), GREEK SMALL LETTER SAMPI
+003F0^ϰ^^\upvarkappa^A^mathalpha^^GREEK KAPPA SYMBOL (round)
+003F1^ϱ^\varrho^\upvarrho^A^mathalpha^-literal^= \mathrm{\varrho} (omlmathrm), = \varrhoup (kpfonts mathdesign), GREEK RHO SYMBOL (round)
+003F4^ϴ^^\upvarTheta^A^mathalpha^^x \varTheta (amssymb), GREEK CAPITAL THETA SYMBOL
+003F5^ϵ^\epsilon^\upvarepsilon^A^mathalpha^-literal^= \mathrm{\epsilon} (omlmathrm), = \epsilonup (kpfonts mathdesign), GREEK LUNATE EPSILON SYMBOL
+003F6^϶^\backepsilon^\upbackepsilon^N^mathord^amssymb wrisym^GREEK REVERSED LUNATE EPSILON SYMBOL
+00428^Ш^^^A^mathalpha^^t \CYRSHHA (T2A), Shcy, CYRILLIC CAPITAL LETTER SHA
+02000^ ^^^S^^^enquad
+02001^ ^\quad^^S^^^emquad
+02002^ ^^^S^^^ensp (half an em)
+02003^ ^^^S^^^emsp
+02004^ ^^^S^^^THREE-PER-EM SPACE
+02005^ ^^^S^^^FOUR-PER-EM SPACE, mid space
+02006^ ^^^S^^^SIX-PER-EM SPACE
+02007^ ^^^S^^^FIGURE SPACE
+02009^ ^^^S^^^THIN SPACE
+0200A^ ^^^S^^^HAIR SPACE
+0200B^​^^^S^^^# \hspace{0pt}, zwsp
+02010^‐^^^P^mathord^^HYPHEN (true graphic)
+02012^‒^^^P^mathord^^dash
+02013^–^^^P^mathord^^ndash
+02014^—^^^P^mathord^^mdash
+02015^―^^\horizbar^^mathord^^HORIZONTAL BAR
+02016^‖^\|^\Vert^F^mathfence^^= \Vert, double vertical bar
+02017^‗^^\twolowline^^mathord^^DOUBLE LOW LINE (spacing)
+02020^†^\dagger^\dagger^N^mathbin^^DAGGER relation
+02021^‡^\ddagger^\ddagger^N^mathbin^^DOUBLE DAGGER relation
+02022^•^^\smblkcircle^B^mathbin^^# \bullet, b: round BULLET, filled
+02025^‥^^\enleadertwodots^^mathord^^double baseline dot (en leader)
+02026^…^\ldots^\unicodeellipsis^N^mathord^^ellipsis (horizontal)
+02032^′^\prime^\prime^N^mathord^^PRIME or minute, not superscripted
+02033^″^\second^\dprime^N^mathord^mathabx^DOUBLE PRIME or second, not superscripted
+02034^‴^\third^\trprime^N^mathord^mathabx^TRIPLE PRIME (not superscripted)
+02035^‵^\backprime^\backprime^N^mathord^amssymb^reverse prime, not superscripted
+02036^‶^^\backdprime^N^mathord^^double reverse prime, not superscripted
+02037^‷^^\backtrprime^N^mathord^^triple reverse prime, not superscripted
+02038^‸^^\caretinsert^^mathord^^CARET (insertion mark)
+0203B^※^^^N^^^REFERENCE MARK, Japanese kome jirushi
+0203C^‼^^\Exclam^N^mathord^^# !!, DOUBLE EXCLAMATION MARK
+02040^⁀^\cat^\tieconcat^B^mathbin^oz^CHARACTER TIE, z notation sequence concatenation
+02043^⁃^^\hyphenbullet^^mathord^^rectangle, filled (HYPHEN BULLET)
+02044^⁄^^\fracslash^B^mathbin^^# /, FRACTION SLASH
+02047^⁇^^\Question^^mathord^^# ??, DOUBLE QUESTION MARK
+0204E^⁎^^^B^mathbin^^# \ast, lowast, LOW ASTERISK
+0204F^⁏^^^R^^^bsemi, REVERSED SEMICOLON
+02050^⁐^^\closure^R^mathrel^^CLOSE UP (editing mark)
+02051^⁑^^^N^^^Ast
+02052^⁒^^^N^mathord^^# ./., COMMERCIAL MINUS SIGN
+02057^⁗^\fourth^\qprime^N^mathord^mathabx^QUADRUPLE PRIME, not superscripted
+0205F^ ^\:^^S^^^= \medspace (amsmath), MEDIUM MATHEMATICAL SPACE, four-eighteenths of an em
+02061^⁡^^^B^^^FUNCTION APPLICATION
+02062^⁢^^^B^^^INVISIBLE TIMES
+02063^⁣^^^P^^^INVISIBLE SEPARATOR
+02064^⁤^^^X^^^INVISIBLE PLUS
+0207A^⁺^^^N^mathord^^SUPERSCRIPT PLUS SIGN subscript operators
+0207B^⁻^^^N^mathord^^SUPERSCRIPT MINUS subscript operators
+0207C^⁼^^^N^mathord^^SUPERSCRIPT EQUALS SIGN subscript operators
+0207D^⁽^^^N^mathopen^^SUPERSCRIPT LEFT PARENTHESIS subscript operators
+0207E^⁾^^^N^mathclose^^SUPERSCRIPT RIGHT PARENTHESIS subscript operators
+0208A^₊^^^N^mathord^^SUBSCRIPT PLUS SIGN superscript operators
+0208B^₋^^^N^mathord^^SUBSCRIPT MINUS superscript operators
+0208C^₌^^^N^mathord^^SUBSCRIPT EQUALS SIGN superscript operators
+0208D^₍^^^N^mathopen^^SUBSCRIPT LEFT PARENTHESIS superscript operators
+0208E^₎^^^N^mathclose^^SUBSCRIPT RIGHT PARENTHESIS superscript operators
+020AC^€^^\euro^^mathord^^EURO SIGN
+020D0^x⃐^\lvec^\leftharpoonaccent^D^mathaccent^wrisym^COMBINING LEFT HARPOON ABOVE
+020D1^x⃑^\vec^\rightharpoonaccent^D^mathaccent^wrisym^COMBINING RIGHT HARPOON ABOVE
+020D2^x⃒^^\vertoverlay^D^mathaccent^^COMBINING LONG VERTICAL LINE OVERLAY
+020D3^x⃓^^^X^mathaccent^^COMBINING SHORT VERTICAL LINE OVERLAY
+020D4^x⃔^^^D^mathaccent^^COMBINING ANTICLOCKWISE ARROW ABOVE
+020D6^x⃖^\LVec^\overleftarrow^D^mathaccent^wrisym^# \overleftarrow, COMBINING LEFT ARROW ABOVE
+020D7^x⃗^\vec^\vec^D^mathaccent^-wrisym^= \Vec (wrisym), # \overrightarrow, COMBINING RIGHT ARROW ABOVE
+020D8^x⃘^^^D^mathaccent^^COMBINING RING OVERLAY
+020D9^x⃙^^^D^mathaccent^^COMBINING CLOCKWISE RING OVERLAY
+020DA^x⃚^^^D^mathaccent^^COMBINING ANTICLOCKWISE RING OVERLAY
+020DB^x⃛^\dddot^\dddot^D^mathaccent^amsmath^= \DDDot (wrisym), COMBINING THREE DOTS ABOVE
+020DC^x⃜^\ddddot^\ddddot^D^mathaccent^amsmath^COMBINING FOUR DOTS ABOVE
+020DD^x⃝^^\enclosecircle^D^mathaccent^^COMBINING ENCLOSING CIRCLE
+020DE^x⃞^^\enclosesquare^D^mathaccent^^COMBINING ENCLOSING SQUARE
+020DF^x⃟^^\enclosediamond^D^mathaccent^^COMBINING ENCLOSING DIAMOND
+020E1^x⃡^\overleftrightarrow^\overleftrightarrow^D^mathaccent^amsmath^COMBINING LEFT RIGHT ARROW ABOVE
+020E4^x⃤^^\enclosetriangle^D^mathaccent^^COMBINING ENCLOSING UPWARD POINTING TRIANGLE
+020E5^x⃥^^^D^mathaccent^^COMBINING REVERSE SOLIDUS OVERLAY
+020E6^x⃦^^^D^mathaccent^^COMBINING DOUBLE VERTICAL STROKE OVERLAY, z notation finite function diacritic
+020E7^x⃧^^\annuity^D^mathaccent^^COMBINING ANNUITY SYMBOL
+020E8^x⃨^^\threeunderdot^D^mathaccent^^COMBINING TRIPLE UNDERDOT
+020E9^x⃩^^\widebridgeabove^D^mathaccent^^COMBINING WIDE BRIDGE ABOVE
+020EA^x⃪^^^D^mathaccent^^COMBINING LEFTWARDS ARROW OVERLAY
+020EB^x⃫^^^D^mathaccent^^COMBINING LONG DOUBLE SOLIDUS OVERLAY
+020EC^x⃬^^\underrightharpoondown^D^mathaccent^^COMBINING RIGHTWARDS HARPOON WITH BARB DOWNWARDS
+020ED^x⃭^^\underleftharpoondown^D^mathaccent^^COMBINING LEFTWARDS HARPOON WITH BARB DOWNWARDS
+020EE^x⃮^\underleftarrow^\underleftarrow^D^mathaccent^amsmath^COMBINING LEFT ARROW BELOW
+020EF^x⃯^\underrightarrow^\underrightarrow^D^mathaccent^amsmath^COMBINING RIGHT ARROW BELOW
+020F0^x⃰^^\asteraccent^^mathaccent^^COMBINING ASTERISK ABOVE
+02102^ℂ^\mathbb{C}^\BbbC^A^mathalpha^mathbb^= \mathds{C} (dsfont), open face C
+02107^ℇ^\Euler^\Eulerconst^N^mathord^wrisym^EULER CONSTANT
+0210A^ℊ^\mathcal{g}^\mscrg^A^mathalpha^urwchancal^/scr g, script small letter g
+0210B^ℋ^\mathcal{H}^\mscrH^A^mathalpha^^hamiltonian (script capital H)
+0210C^ℌ^\mathfrak{H}^\mfrakH^A^mathalpha^eufrak^/frak H, black-letter capital H
+0210D^ℍ^\mathbb{H}^\BbbH^A^mathalpha^mathbb^= \mathds{H} (dsfont), open face capital H
+0210E^ℎ^^\Planckconst^N^mathord^^# h, Planck constant
+0210F^ℏ^\hslash^\hslash^N^mathalpha^amssymb fourier arevmath^=\HBar (wrisym), #\hbar, Planck's h over 2pi
+02110^ℐ^\mathcal{I}^\mscrI^A^mathalpha^^/scr I, script capital I
+02111^ℑ^\Im^\Im^A^mathalpha^^= \mathfrak{I} (eufrak), imaginary part
+02112^ℒ^\mathcal{L}^\mscrL^A^mathalpha^^lagrangian (script capital L)
+02113^ℓ^\ell^\ell^A^mathalpha^^cursive small l
+02115^ℕ^\mathbb{N}^\BbbN^A^mathalpha^mathbb^= \mathds{N} (dsfont), open face N
+02118^℘^\wp^\wp^A^mathalpha^amssymb^weierstrass p
+02119^ℙ^\mathbb{P}^\BbbP^A^mathalpha^mathbb^= \mathds{P} (dsfont), open face P
+0211A^ℚ^\mathbb{Q}^\BbbQ^A^mathalpha^mathbb^= \mathds{Q} (dsfont), open face Q
+0211B^ℛ^\mathcal{R}^\mscrR^A^mathalpha^^/scr R, script capital R
+0211C^ℜ^\Re^\Re^A^mathalpha^^= \mathfrak{R} (eufrak), real part
+0211D^ℝ^\mathbb{R}^\BbbR^A^mathalpha^mathbb^= \mathds{R} (dsfont), open face R
+02124^ℤ^\mathbb{Z}^\BbbZ^A^mathalpha^mathbb^= \mathds{Z} (dsfont), open face Z
+02126^Ω^\tcohm^^N^mathalpha^mathcomp^# \mathrm{\Omega}, ohm (deprecated in math, use greek letter)
+02127^℧^\mho^\mho^N^mathord^amsfonts arevmath^= \Mho (wrisym), t \agemO (wasysym), conductance
+02128^ℨ^\mathfrak{Z}^\mfrakZ^A^mathalpha^eufrak^/frak Z, black-letter capital Z
+02129^℩^^\turnediota^N^mathalpha^^turned iota
+0212B^Å^\Angstroem^\Angstrom^A^mathalpha^wrisym^# \mathring{\mathrm{A}}, Ångström capital A with ring
+0212C^ℬ^\mathcal{B}^\mscrB^A^mathalpha^^bernoulli function (script capital B)
+0212D^ℭ^\mathfrak{C}^\mfrakC^A^mathalpha^eufrak^black-letter capital C
+0212F^ℯ^\mathcal{e}^\mscre^A^mathalpha^urwchancal^/scr e, script small letter e
+02130^ℰ^\mathcal{E}^\mscrE^A^mathalpha^^/scr E, script capital E
+02131^ℱ^\mathcal{F}^\mscrF^A^mathalpha^^/scr F, script capital F
+02132^Ⅎ^\Finv^\Finv^N^mathord^amssymb^TURNED CAPITAL F
+02133^ℳ^\mathcal{M}^\mscrM^A^mathalpha^^physics m-matrix (SCRIPT CAPITAL M)
+02134^ℴ^\mathcal{o}^\mscro^A^mathalpha^urwchancal^order of (SCRIPT SMALL O)
+02135^ℵ^\aleph^\aleph^A^mathalpha^^aleph, hebrew
+02136^ℶ^\beth^\beth^A^mathalpha^amssymb wrisym^beth, hebrew
+02137^ℷ^\gimel^\gimel^A^mathalpha^amssymb wrisym^gimel, hebrew
+02138^ℸ^\daleth^\daleth^A^mathalpha^amssymb wrisym^daleth, hebrew
+0213C^ℼ^\mathbb{\pi}^\Bbbpi^A^mathord^bbold^\DoublePi (wrisym), DOUBLE-STRUCK SMALL PI
+0213D^ℽ^\mathbb{\gamma}^\Bbbgamma^A^mathalpha^bbold^\EulerGamma (wrisym), DOUBLE-STRUCK SMALL GAMMA
+0213E^ℾ^\mathbb{\Gamma}^\BbbGamma^N^mathalpha^bbold^DOUBLE-STRUCK CAPITAL GAMMA
+0213F^ℿ^\mathbb{\Pi}^\BbbPi^A^mathalpha^bbold^DOUBLE-STRUCK CAPITAL PI
+02140^⅀^\mathbb{\Sigma}^\Bbbsum^L^mathop^bbold^DOUBLE-STRUCK N-ARY SUMMATION
+02141^⅁^^\Game^N^mathord^^# \Game (amssymb), TURNED SANS-SERIF CAPITAL G (amssymb has mirrored G)
+02142^⅂^^\sansLturned^N^mathord^^TURNED SANS-SERIF CAPITAL L
+02143^⅃^^\sansLmirrored^N^mathord^^REVERSED SANS-SERIF CAPITAL L
+02144^⅄^\Yup^\Yup^N^mathord^stmaryrd^TURNED SANS-SERIF CAPITAL Y
+02145^ⅅ^\CapitalDifferentialD^\mitBbbD^N^mathord^wrisym^= \DD (wrisym), DOUBLE-STRUCK ITALIC CAPITAL D
+02146^ⅆ^\DifferentialD^\mitBbbd^N^mathord^wrisym^= \dd (wrisym), DOUBLE-STRUCK ITALIC SMALL D
+02147^ⅇ^\ExponetialE^\mitBbbe^N^mathord^wrisym^= \ee (wrisym), DOUBLE-STRUCK ITALIC SMALL E
+02148^ⅈ^\ComplexI^\mitBbbi^N^mathord^wrisym^= \ii (wrisym), DOUBLE-STRUCK ITALIC SMALL I
+02149^ⅉ^\ComplexJ^\mitBbbj^N^mathord^wrisym^= \jj (wrisym), DOUBLE-STRUCK ITALIC SMALL J
+0214A^⅊^^\PropertyLine^^mathord^^PROPERTY LINE
+0214B^⅋^\invamp^\upand^N^mathbin^txfonts^# \bindnasrepma (stmaryrd), TURNED AMPERSAND
+02190^←^\leftarrow^\leftarrow^R^mathrel^^= \gets, a: leftward arrow
+02191^↑^\uparrow^\uparrow^R^mathrel^^upward arrow
+02192^→^\rightarrow^\rightarrow^R^mathrel^^= \to, = \tfun (oz), = \fun (oz), rightward arrow, z notation total function
+02193^↓^\downarrow^\downarrow^R^mathrel^^downward arrow
+02194^↔^\leftrightarrow^\leftrightarrow^R^mathrel^-wrisym^= \rel (oz), LEFT RIGHT ARROW, z notation relation
+02195^↕^\updownarrow^\updownarrow^R^mathrel^^up and down arrow
+02196^↖^\nwarrow^\nwarrow^R^mathrel^amssymb^nw pointing arrow
+02197^↗^\nearrow^\nearrow^R^mathrel^^ne pointing arrow
+02198^↘^\searrow^\searrow^R^mathrel^^se pointing arrow
+02199^↙^\swarrow^\swarrow^R^mathrel^^sw pointing arrow
+0219A^↚^\nleftarrow^\nleftarrow^R^mathrel^amssymb^not left arrow
+0219B^↛^\nrightarrow^\nrightarrow^R^mathrel^amssymb^not right arrow
+0219C^↜^^\leftwavearrow^R^mathrel^^left arrow-wavy
+0219D^↝^^\rightwavearrow^R^mathrel^^right arrow-wavy
+0219E^↞^\twoheadleftarrow^\twoheadleftarrow^R^mathrel^amssymb^left two-headed arrow
+0219F^↟^^\twoheaduparrow^R^mathrel^^up two-headed arrow
+021A0^↠^\twoheadrightarrow^\twoheadrightarrow^R^mathrel^amssymb^= \tsur (oz), = \surj (oz), right two-headed arrow, z notation total surjection
+021A1^↡^^\twoheaddownarrow^R^mathrel^^down two-headed arrow
+021A2^↢^\leftarrowtail^\leftarrowtail^R^mathrel^amssymb^left arrow-tailed
+021A3^↣^\rightarrowtail^\rightarrowtail^R^mathrel^amssymb^= \tinj (oz), = \inj (oz), right arrow-tailed, z notation total injection
+021A4^↤^\mapsfrom^\mapsfrom^R^mathrel^stmaryrd^= \mappedfrom (kpfonts), maps to, leftward
+021A5^↥^\MapsUp^\mapsup^R^mathrel^wrisym^maps to, upward
+021A6^↦^\mapsto^\mapsto^R^mathrel^^maps to, rightward, z notation maplet
+021A7^↧^\MapsDown^\mapsdown^R^mathrel^wrisym^maps to, downward
+021A8^↨^^\updownarrowbar^R^mathord^^UP DOWN ARROW WITH BASE (perpendicular)
+021A9^↩^\hookleftarrow^\hookleftarrow^R^mathrel^^left arrow-hooked
+021AA^↪^\hookrightarrow^\hookrightarrow^R^mathrel^^right arrow-hooked
+021AB^↫^\looparrowleft^\looparrowleft^R^mathrel^amssymb^left arrow-looped
+021AC^↬^\looparrowright^\looparrowright^R^mathrel^amssymb^right arrow-looped
+021AD^↭^\leftrightsquigarrow^\leftrightsquigarrow^R^mathrel^amssymb^left and right arr-wavy
+021AE^↮^\nleftrightarrow^\nleftrightarrow^R^mathrel^amssymb^not left and right arrow
+021AF^↯^\lightning^\downzigzagarrow^R^mathrel^stmaryrd^t \Lightning (marvosym), DOWNWARDS ZIGZAG ARROW
+021B0^↰^\Lsh^\Lsh^R^mathrel^amssymb^a: UPWARDS ARROW WITH TIP LEFTWARDS
+021B1^↱^\Rsh^\Rsh^R^mathrel^amssymb^a: UPWARDS ARROW WITH TIP RIGHTWARDS
+021B2^↲^\dlsh^\Ldsh^R^mathrel^mathabx^left down angled arrow
+021B3^↳^\drsh^\Rdsh^R^mathrel^mathabx^right down angled arrow
+021B4^↴^^\linefeed^^mathord^^RIGHTWARDS ARROW WITH CORNER DOWNWARDS
+021B5^↵^^\carriagereturn^^mathord^^downwards arrow with corner leftward = carriage return
+021B6^↶^\curvearrowleft^\curvearrowleft^R^mathrel^amssymb fourier^left curved arrow
+021B7^↷^\curvearrowright^\curvearrowright^R^mathrel^amssymb fourier^right curved arrow
+021B8^↸^^\barovernorthwestarrow^^mathord^^NORTH WEST ARROW TO LONG BAR
+021B9^↹^^\barleftarrowrightarrowba^^mathord^^LEFTWARDS ARROW TO BAR OVER RIGHTWARDS ARROW TO BAR
+021BA^↺^\circlearrowleft^\acwopencirclearrow^R^mathord^amssymb^= \leftturn (wasysym), ANTICLOCKWISE OPEN CIRCLE ARROW
+021BB^↻^\circlearrowright^\cwopencirclearrow^R^mathord^amssymb^= \rightturn (wasysym), CLOCKWISE OPEN CIRCLE ARROW
+021BC^↼^\leftharpoonup^\leftharpoonup^R^mathrel^^left harpoon-up
+021BD^↽^\leftharpoondown^\leftharpoondown^R^mathrel^^left harpoon-down
+021BE^↾^\upharpoonright^\upharpoonright^R^mathrel^amssymb^= \restriction (amssymb), = \upharpoonrightup (wrisym), a: up harpoon-right
+021BF^↿^\upharpoonleft^\upharpoonleft^R^mathrel^amssymb^= \upharpoonleftup (wrisym), up harpoon-left
+021C0^⇀^\rightharpoonup^\rightharpoonup^R^mathrel^^right harpoon-up
+021C1^⇁^\rightharpoondown^\rightharpoondown^R^mathrel^^right harpoon-down
+021C2^⇂^\downharpoonright^\downharpoonright^R^mathrel^amssymb^= \upharpoonrightdown (wrisym), down harpoon-right
+021C3^⇃^\downharpoonleft^\downharpoonleft^R^mathrel^amssymb^= \upharpoonleftdown (wrisym), down harpoon-left
+021C4^⇄^\rightleftarrows^\rightleftarrows^R^mathrel^amssymb^= \rightleftarrow (wrisym), right arrow over left arrow
+021C5^⇅^\updownarrows^\updownarrows^R^mathrel^mathabx^= \uparrowdownarrow (wrisym), up arrow, down arrow
+021C6^⇆^\leftrightarrows^\leftrightarrows^R^mathrel^amssymb^= \leftrightarrow (wrisym), left arrow over right arrow
+021C7^⇇^\leftleftarrows^\leftleftarrows^R^mathrel^amssymb fourier^two left arrows
+021C8^⇈^\upuparrows^\upuparrows^R^mathrel^amssymb^two up arrows
+021C9^⇉^\rightrightarrows^\rightrightarrows^R^mathrel^amssymb fourier^two right arrows
+021CA^⇊^\downdownarrows^\downdownarrows^R^mathrel^amssymb^two down arrows
+021CB^⇋^\leftrightharpoons^\leftrightharpoons^R^mathrel^amssymb^= \revequilibrium (wrisym), left harpoon over right
+021CC^⇌^\rightleftharpoons^\rightleftharpoons^R^mathrel^^= \equilibrium (wrisym), right harpoon over left
+021CD^⇍^\nLeftarrow^\nLeftarrow^R^mathrel^amssymb^not implied by
+021CE^⇎^\nLeftrightarrow^\nLeftrightarrow^R^mathrel^amssymb^not left and right double arrows
+021CF^⇏^\nRightarrow^\nRightarrow^R^mathrel^amssymb^not implies
+021D0^⇐^\Leftarrow^\Leftarrow^R^mathrel^^left double arrow
+021D1^⇑^\Uparrow^\Uparrow^R^mathrel^^up double arrow
+021D2^⇒^\Rightarrow^\Rightarrow^R^mathrel^-marvosym^right double arrow
+021D3^⇓^\Downarrow^\Downarrow^R^mathrel^^down double arrow
+021D4^⇔^\Leftrightarrow^\Leftrightarrow^R^mathrel^^left and right double arrow
+021D5^⇕^\Updownarrow^\Updownarrow^R^mathrel^^up and down double arrow
+021D6^⇖^\Nwarrow^\Nwarrow^R^mathrel^txfonts^nw pointing double arrow
+021D7^⇗^\Nearrow^\Nearrow^R^mathrel^txfonts^ne pointing double arrow
+021D8^⇘^\Searrow^\Searrow^R^mathrel^txfonts^se pointing double arrow
+021D9^⇙^\Swarrow^\Swarrow^R^mathrel^txfonts^sw pointing double arrow
+021DA^⇚^\Lleftarrow^\Lleftarrow^R^mathrel^amssymb^left triple arrow
+021DB^⇛^\Rrightarrow^\Rrightarrow^R^mathrel^amssymb^right triple arrow
+021DC^⇜^\leftsquigarrow^\leftsquigarrow^R^mathrel^mathabx txfonts^LEFTWARDS SQUIGGLE ARROW
+021DD^⇝^\rightsquigarrow^\rightsquigarrow^R^mathrel^amssymb^RIGHTWARDS SQUIGGLE ARROW
+021DE^⇞^^\nHuparrow^R^mathord^^UPWARDS ARROW WITH DOUBLE STROKE
+021DF^⇟^^\nHdownarrow^R^mathord^^DOWNWARDS ARROW WITH DOUBLE STROKE
+021E0^⇠^\dashleftarrow^\leftdasharrow^R^mathord^amsfonts^LEFTWARDS DASHED ARROW
+021E1^⇡^^\updasharrow^R^mathord^^UPWARDS DASHED ARROW
+021E2^⇢^\dashrightarrow^\rightdasharrow^R^mathord^amsfonts^= \dasharrow (amsfonts), RIGHTWARDS DASHED ARROW
+021E3^⇣^^\downdasharrow^R^mathord^^DOWNWARDS DASHED ARROW
+021E4^⇤^\LeftArrowBar^\barleftarrow^R^mathrel^wrisym^LEFTWARDS ARROW TO BAR
+021E5^⇥^\RightArrowBar^\rightarrowbar^R^mathrel^wrisym^RIGHTWARDS ARROW TO BAR
+021E6^⇦^^\leftwhitearrow^R^mathord^^LEFTWARDS WHITE ARROW
+021E7^⇧^^\upwhitearrow^R^mathord^^UPWARDS WHITE ARROW
+021E8^⇨^^\rightwhitearrow^R^mathord^^RIGHTWARDS WHITE ARROW
+021E9^⇩^^\downwhitearrow^R^mathord^^DOWNWARDS WHITE ARROW
+021EA^⇪^^\whitearrowupfrombar^^mathord^^UPWARDS WHITE ARROW FROM BAR
+021EB^⇫^^^^mathord^^UPWARDS WHITE ARROW ON PEDESTAL
+021EC^⇬^^^^mathord^^UPWARDS WHITE ARROW ON PEDESTAL WITH HORIZONTAL BAR
+021ED^⇭^^^^mathord^^UPWARDS WHITE ARROW ON PEDESTAL WITH VERTICAL BAR
+021EE^⇮^^^^mathord^^UPWARDS WHITE DOUBLE ARROW
+021EF^⇯^^^^mathord^^UPWARDS WHITE DOUBLE ARROW ON PEDESTAL
+021F0^⇰^^^^mathord^^RIGHTWARDS WHITE ARROW FROM WALL
+021F1^⇱^^^^mathord^^NORTH WEST ARROW TO CORNER
+021F2^⇲^^^^mathord^^SOUTH EAST ARROW TO CORNER
+021F3^⇳^^^^mathord^^UP DOWN WHITE ARROW
+021F4^⇴^^\circleonrightarrow^R^mathrel^^RIGHT ARROW WITH SMALL CIRCLE
+021F5^⇵^\downuparrows^\downuparrows^R^mathrel^mathabx^= \downarrowuparrow (wrisym), DOWNWARDS ARROW LEFTWARDS OF UPWARDS ARROW
+021F6^⇶^^\rightthreearrows^R^mathrel^^THREE RIGHTWARDS ARROWS
+021F7^⇷^^\nvleftarrow^R^mathrel^^LEFTWARDS ARROW WITH VERTICAL STROKE
+021F8^⇸^\pfun^\nvrightarrow^R^mathrel^oz^RIGHTWARDS ARROW WITH VERTICAL STROKE, z notation partial function
+021F9^⇹^^\nvleftrightarrow^R^mathrel^^LEFT RIGHT ARROW WITH VERTICAL STROKE, z notation partial relation
+021FA^⇺^^\nVleftarrow^R^mathrel^^LEFTWARDS ARROW WITH DOUBLE VERTICAL STROKE
+021FB^⇻^\ffun^\nVrightarrow^R^mathrel^oz^RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE, z notation finite function
+021FC^⇼^^\nVleftrightarrow^R^mathrel^^LEFT RIGHT ARROW WITH DOUBLE VERTICAL STROKE, z notation finite relation
+021FD^⇽^\leftarrowtriangle^\leftarrowtriangle^R^mathrel^stmaryrd^LEFTWARDS OPEN-HEADED ARROW
+021FE^⇾^\rightarrowtriangle^\rightarrowtriangle^R^mathrel^stmaryrd^RIGHTWARDS OPEN-HEADED ARROW
+021FF^⇿^\leftrightarrowtriangle^\leftrightarrowtriangle^R^mathrel^stmaryrd^LEFT RIGHT OPEN-HEADED ARROW
+02200^∀^\forall^\forall^U^mathord^^FOR ALL
+02201^∁^\complement^\complement^U^mathord^amssymb fourier^COMPLEMENT sign
+02202^∂^\partial^\partial^N^mathord^-literal^= \partialup (kpfonts), PARTIAL DIFFERENTIAL
+02203^∃^\exists^\exists^U^mathord^^= \exi (oz), at least one exists
+02204^∄^\nexists^\nexists^U^mathord^amssymb fourier^= \nexi (oz), negated exists
+02205^∅^\varnothing^\varnothing^N^mathord^amssymb^circle, slash
+02206^∆^^\increment^U^mathord^^# \mathrm{\Delta}, laplacian (Delta; nabla square)
+02207^∇^\nabla^\nabla^U^mathord^^NABLA, del, hamilton operator
+02208^∈^\in^\in^R^mathrel^^set membership, variant
+02209^∉^\notin^\notin^R^mathrel^^= \nin (wrisym), negated set membership
+0220A^∊^^\smallin^R^mathrel^^set membership (small set membership)
+0220B^∋^\ni^\ni^R^mathrel^^= \owns, contains, variant
+0220C^∌^\nni^\nni^R^mathrel^wrisym^= \notni (txfonts), = \notowner (mathabx), = \notowns (fourier), negated contains, variant
+0220D^∍^^\smallni^R^mathrel^^r: contains (SMALL CONTAINS AS MEMBER)
+0220E^∎^^\QED^N^mathord^^# \blacksquare (amssymb), END OF PROOF
+0220F^∏^\prod^\prod^L^mathop^^product operator
+02210^∐^\coprod^\coprod^L^mathop^^coproduct operator
+02211^∑^\sum^\sum^L^mathop^^summation operator
+02212^−^-^\minus^V^mathbin^^MINUS SIGN
+02213^∓^\mp^\mp^V^mathbin^^MINUS-OR-PLUS SIGN
+02214^∔^\dotplus^\dotplus^B^mathbin^amssymb^plus sign, dot above
+02215^∕^\slash^\divslash^B^mathbin^^DIVISION SLASH
+02216^∖^\smallsetminus^\smallsetminus^B^mathbin^amssymb fourier^small SET MINUS (cf. reverse solidus)
+02217^∗^\ast^\ast^B^mathbin^^ASTERISK OPERATOR (Hodge star operator)
+02218^°^\circ^\vysmwhtcircle^B^mathbin^^composite function (small circle)
+02219^∙^\bullet^\vysmblkcircle^B^mathbin^^BULLET OPERATOR
+0221A^√^\sqrt^\sqrt^L^mathradical^^radical
+0221B^∛^\sqrt[3]^\cuberoot^L^mathradical^^CUBE ROOT
+0221C^∜^\sqrt[4]^\fourthroot^L^mathradical^^FOURTH ROOT
+0221D^∝^\propto^\propto^R^mathrel^^# \varpropto (amssymb), is PROPORTIONAL TO
+0221E^∞^\infty^\infty^N^mathord^^INFINITY
+0221F^∟^\rightangle^\rightangle^N^mathord^wrisym^right (90 degree) angle
+02220^∠^\angle^\angle^N^mathord^^ANGLE
+02221^∡^\measuredangle^\measuredangle^N^mathord^amssymb wrisym^MEASURED ANGLE
+02222^∢^\sphericalangle^\sphericalangle^N^mathord^amssymb wrisym^SPHERICAL ANGLE
+02223^∣^\mid^\mid^R^mathrel^^r: DIVIDES
+02224^∤^\nmid^\nmid^R^mathrel^amssymb^negated mid, DOES NOT DIVIDE
+02225^∥^\parallel^\parallel^R^mathrel^^parallel
+02226^∦^\nparallel^\nparallel^R^mathrel^amssymb fourier^not parallel
+02227^∧^\wedge^\wedge^B^mathbin^amssymb^= \land, b: LOGICAL AND
+02228^∨^\vee^\vee^B^mathbin^^= \lor, b: LOGICAL OR
+02229^∩^\cap^\cap^B^mathbin^^INTERSECTION
+0222A^∪^\cup^\cup^B^mathbin^^UNION or logical sum
+0222B^∫^\int^\int^L^mathop^^INTEGRAL operator
+0222C^∬^\iint^\iint^L^mathop^amsmath fourier esint wasysym^DOUBLE INTEGRAL operator
+0222D^∭^\iiint^\iiint^L^mathop^amsmath fourier esint wasysym^TRIPLE INTEGRAL operator
+0222E^∮^\oint^\oint^L^mathop^^CONTOUR INTEGRAL operator
+0222F^∯^\oiint^\oiint^L^mathop^esint wasysym fourier^= \dbloint (wrisym), double contour integral operator
+02230^∰^\oiiint^\oiiint^L^mathop^txfonts fourier^triple contour integral operator
+02231^∱^^\intclockwise^L^mathop^^CLOCKWISE INTEGRAL
+02232^∲^\varointclockwise^\varointclockwise^L^mathop^esint^= \clockoint (wrisym), contour integral, clockwise
+02233^∳^\ointctrclockwise^\ointctrclockwise^L^mathop^esint^= \cntclockoint (wrisym), contour integral, anticlockwise
+02234^∴^\therefore^\therefore^R^mathord^amssymb wrisym^= \wasytherefore (wasysym), THEREFORE
+02235^∵^\because^\because^R^mathord^amssymb wrisym^BECAUSE
+02236^∶^:^\mathratio^R^mathrel^^x \colon, RATIO
+02237^∷^\Proportion^\Colon^R^mathrel^wrisym^# ::, two colons
+02238^∸^^\dotminus^B^mathbin^^minus sign, dot above
+02239^∹^\eqcolon^\dashcolon^R^mathrel^txfonts -mathabx^# -: ,EXCESS
+0223A^∺^^\dotsminusdots^R^mathrel^^minus with four dots, GEOMETRIC PROPORTION
+0223B^∻^^\kernelcontraction^R^mathrel^^HOMOTHETIC
+0223C^∼^\sim^\sim^R^mathrel^^similar to, TILDE OPERATOR
+0223D^∽^\backsim^\backsim^R^mathrel^amssymb^reverse similar
+0223E^∾^^\invlazys^B^mathbin^^most positive, INVERTED LAZY S
+0223F^∿^\AC^\sinewave^N^mathord^wasysym^SINE WAVE, alternating current
+02240^≀^\wr^\wr^B^mathbin^amssymb^WREATH PRODUCT
+02241^≁^\nsim^\nsim^R^mathrel^amssymb wrisym^not similar
+02242^≂^\eqsim^\eqsim^R^mathrel^amssymb^equals, similar
+02243^≃^\simeq^\simeq^R^mathrel^^similar, equals
+02244^≄^\nsimeq^\nsime^R^mathrel^txfonts^not similar, equals
+02245^≅^\cong^\cong^R^mathrel^^congruent with
+02246^≆^^\simneqq^R^mathrel^^similar, not equals [vert only for 9573 entity]
+02247^≇^\ncong^\ncong^R^mathrel^amssymb wrisym^not congruent with
+02248^≈^\approx^\approx^R^mathrel^^approximate
+02249^≉^\napprox^\napprox^R^mathrel^wrisym^not approximate
+0224A^≊^\approxeq^\approxeq^R^mathrel^amssymb^approximate, equals
+0224B^≋^^\approxident^R^mathrel^^approximately identical to
+0224C^≌^^\backcong^R^mathrel^^ALL EQUAL TO
+0224D^≍^\asymp^\asymp^R^mathrel^^asymptotically equal to
+0224E^≎^\Bumpeq^\Bumpeq^R^mathrel^amssymb wrisym^bumpy equals
+0224F^≏^\bumpeq^\bumpeq^R^mathrel^amssymb wrisym^bumpy equals, equals
+02250^≐^\doteq^\doteq^R^mathrel^^= \dotequal (wrisym), equals, single dot above
+02251^≑^\Doteq^\Doteq^R^mathrel^amssymb^= \doteqdot (amssymb), /doteq r: equals, even dots
+02252^≒^\fallingdotseq^\fallingdotseq^R^mathrel^amssymb^equals, falling dots
+02253^≓^\risingdotseq^\risingdotseq^R^mathrel^amssymb^equals, rising dots
+02254^≔^\coloneq^\coloneq^R^mathrel^mathabx -txfonts^= \coloneqq (txfonts), = \SetDelayed (wrisym), # := colon, equals
+02255^≕^\eqcolon^\eqcolon^R^mathrel^mathabx -txfonts^= \eqqcolon (txfonts), # =:, equals, colon
+02256^≖^\eqcirc^\eqcirc^R^mathrel^amssymb^circle on equals sign
+02257^≗^\circeq^\circeq^R^mathrel^amssymb^circle, equals
+02258^≘^^\arceq^R^mathrel^^arc, equals; CORRESPONDS TO
+02259^≙^\corresponds^\wedgeq^R^mathrel^mathabx^= \sdef (oz), t \Corresponds (marvosym), corresponds to (wedge over equals)
+0225A^≚^^\veeeq^R^mathrel^^logical or, equals
+0225B^≛^^\stareq^R^mathrel^^STAR EQUALS
+0225C^≜^\triangleq^\triangleq^R^mathrel^amssymb^= \varsdef (oz), triangle, equals
+0225D^≝^^\eqdef^R^mathrel^^equals by definition
+0225E^≞^^\measeq^R^mathrel^^MEASURED BY (m over equals)
+0225F^≟^^\questeq^R^mathrel^^equal with questionmark
+02260^≠^\neq^\ne^R^mathrel^^= \ne, r: not equal
+02261^≡^\equiv^\equiv^R^mathrel^^identical with
+02262^≢^\nequiv^\nequiv^R^mathrel^wrisym^not identical with
+02263^≣^^\Equiv^R^mathrel^^strict equivalence (4 lines)
+02264^≤^\leq^\leq^R^mathrel^^= \le, r: less-than-or-equal
+02265^≥^\geq^\geq^R^mathrel^^= \ge, r: greater-than-or-equal
+02266^≦^\leqq^\leqq^R^mathrel^amssymb^less, double equals
+02267^≧^\geqq^\geqq^R^mathrel^amssymb^greater, double equals
+02268^≨^\lneqq^\lneqq^R^mathrel^amssymb^less, not double equals
+02269^≩^\gneqq^\gneqq^R^mathrel^amssymb^greater, not double equals
+0226A^≪^\ll^\ll^R^mathrel^^much less than, type 2
+0226B^≫^\gg^\gg^R^mathrel^^much greater than, type 2
+0226C^≬^\between^\between^R^mathrel^amssymb^BETWEEN
+0226D^≭^\notasymp^\nasymp^R^mathrel^mathabx^= \nasymp (wrisym), not asymptotically equal to
+0226E^≮^\nless^\nless^R^mathrel^amssymb^NOT LESS-THAN
+0226F^≯^\ngtr^\ngtr^R^mathrel^amssymb^NOT GREATER-THAN
+02270^≰^\nleq^\nleq^R^mathrel^amssymb wrisym^= \nleqslant (fourier), not less-than-or-equal
+02271^≱^\ngeq^\ngeq^R^mathrel^amssymb wrisym^= \ngeqslant (fourier), not greater-than-or-equal
+02272^≲^\lesssim^\lesssim^R^mathrel^amssymb^= \apprle (wasysym), = \LessTilde (wrisym), less, similar
+02273^≳^\gtrsim^\gtrsim^R^mathrel^amssymb^= \apprge (wasysym), = \GreaterTilde (wrisym), greater, similar
+02274^≴^\NotLessTilde^\nlesssim^R^mathrel^wrisym^not less, similar
+02275^≵^\NotGreaterTilde^\ngtrsim^R^mathrel^wrisym^not greater, similar
+02276^≶^\lessgtr^\lessgtr^R^mathrel^amssymb^less, greater
+02277^≷^\gtrless^\gtrless^R^mathrel^amssymb^= \GreaterLess (wrisym), greater, less
+02278^≸^^\nlessgtr^R^mathrel^wrisym^not less, greater
+02279^≹^\NotGreaterLess^\ngtrless^R^mathrel^wrisym^not greater, less
+0227A^≺^\prec^\prec^R^mathrel^^PRECEDES
+0227B^≻^\succ^\succ^R^mathrel^^SUCCEEDS
+0227C^≼^\preccurlyeq^\preccurlyeq^R^mathrel^amssymb^= \PrecedesSlantEqual (wrisym), precedes, curly equals
+0227D^≽^\succcurlyeq^\succcurlyeq^R^mathrel^amssymb^= \SucceedsSlantEqual (wrisym), succeeds, curly equals
+0227E^≾^\precsim^\precsim^R^mathrel^amssymb^= \PrecedesTilde (wrisym), precedes, similar
+0227F^≿^\succsim^\succsim^R^mathrel^amssymb^= \SucceedsTilde (wrisym), succeeds, similar
+02280^⊀^\nprec^\nprec^R^mathrel^amssymb wrisym^not precedes
+02281^⊁^\nsucc^\nsucc^R^mathrel^amssymb wrisym^not succeeds
+02282^⊂^\subset^\subset^R^mathrel^^subset or is implied by
+02283^⊃^\supset^\supset^R^mathrel^^superset or implies
+02284^⊄^\nsubset^\nsubset^R^mathrel^wrisym^not subset, variant [slash negation]
+02285^⊅^\nsupset^\nsupset^R^mathrel^wrisym^not superset, variant [slash negation]
+02286^⊆^\subseteq^\subseteq^R^mathrel^^subset, equals
+02287^⊇^\supseteq^\supseteq^R^mathrel^^superset, equals
+02288^⊈^\nsubseteq^\nsubseteq^R^mathrel^amssymb wrisym^not subset, equals
+02289^⊉^\nsupseteq^\nsupseteq^R^mathrel^amssymb wrisym^not superset, equals
+0228A^⊊^\subsetneq^\subsetneq^R^mathrel^amssymb^= \varsubsetneq (fourier), subset, not equals
+0228B^⊋^\supsetneq^\supsetneq^R^mathrel^amssymb^superset, not equals
+0228C^⊌^^\cupleftarrow^B^mathbin^^MULTISET
+0228D^⊍^^\cupdot^B^mathbin^^union, with dot
+0228E^⊎^\uplus^\uplus^B^mathbin^^= \buni (oz), plus sign in union
+0228F^⊏^\sqsubset^\sqsubset^R^mathrel^amsfonts^square subset
+02290^⊐^\sqsupset^\sqsupset^R^mathrel^amsfonts^square superset
+02291^⊑^\sqsubseteq^\sqsubseteq^R^mathrel^^square subset, equals
+02292^⊒^\sqsupseteq^\sqsupseteq^R^mathrel^^square superset, equals
+02293^⊓^\sqcap^\sqcap^B^mathbin^^square intersection
+02294^⊔^\sqcup^\sqcup^B^mathbin^^square union
+02295^⊕^\oplus^\oplus^B^mathbin^^plus sign in circle
+02296^⊖^\ominus^\ominus^B^mathbin^^minus sign in circle
+02297^⊗^\otimes^\otimes^B^mathbin^^multiply sign in circle
+02298^⊘^\oslash^\oslash^B^mathbin^^solidus in circle
+02299^⊙^\odot^\odot^B^mathbin^^middle dot in circle
+0229A^⊚^\circledcirc^\circledcirc^B^mathbin^amssymb^small circle in circle
+0229B^⊛^\circledast^\circledast^B^mathbin^amssymb^asterisk in circle
+0229C^⊜^^\circledequal^B^mathbin^^equal in circle
+0229D^⊝^\circleddash^\circleddash^B^mathbin^amssymb^hyphen in circle
+0229E^⊞^\boxplus^\boxplus^B^mathbin^amssymb^plus sign in box
+0229F^⊟^\boxminus^\boxminus^B^mathbin^amssymb^minus sign in box
+022A0^⊠^\boxtimes^\boxtimes^B^mathbin^amssymb^multiply sign in box
+022A1^⊡^\boxdot^\boxdot^B^mathbin^amssymb stmaryrd^/dotsquare /boxdot b: small dot in box
+022A2^⊢^\vdash^\vdash^R^mathrel^^RIGHT TACK, proves, implies, yields, (vertical, dash)
+022A3^⊣^\dashv^\dashv^R^mathrel^amssymb^LEFT TACK, non-theorem, does not yield, (dash, vertical)
+022A4^⊤^\top^\top^N^mathord^^DOWN TACK, top
+022A5^⊥^\bot^\bot^R^mathord^^UP TACK, bottom
+022A6^⊦^^\assert^R^mathrel^^# \vdash, ASSERTION (vertical, short dash)
+022A7^⊧^\models^\models^R^mathrel^^MODELS (vertical, short double dash)
+022A8^⊨^\vDash^\vDash^R^mathrel^amssymb fourier^TRUE (vertical, double dash)
+022A9^⊩^\Vdash^\Vdash^R^mathrel^amssymb^double vertical, dash
+022AA^⊪^\Vvdash^\Vvdash^R^mathrel^amssymb^triple vertical, dash
+022AB^⊫^\VDash^\VDash^R^mathrel^mathabx txfonts^double vert, double dash
+022AC^⊬^\nvdash^\nvdash^R^mathrel^amssymb^not vertical, dash
+022AD^⊭^\nvDash^\nvDash^R^mathrel^amssymb fourier^not vertical, double dash
+022AE^⊮^\nVdash^\nVdash^R^mathrel^amssymb^not double vertical, dash
+022AF^⊯^\nVDash^\nVDash^R^mathrel^amssymb^not double vert, double dash
+022B0^⊰^^\prurel^R^mathrel^^element PRECEDES UNDER RELATION
+022B1^⊱^^\scurel^R^mathrel^^SUCCEEDS UNDER RELATION
+022B2^⊲^\vartriangleleft^\vartriangleleft^R^mathrel^amssymb^left triangle, open, variant
+022B3^⊳^\vartriangleright^\vartriangleright^R^mathrel^amssymb^right triangle, open, variant
+022B4^⊴^\trianglelefteq^\trianglelefteq^R^mathrel^amssymb^= \unlhd (wrisym), left triangle, equals
+022B5^⊵^\trianglerighteq^\trianglerighteq^R^mathrel^amssymb^= \unrhd (wrisym), right triangle, equals
+022B6^⊶^\multimapdotbothA^\origof^R^mathrel^txfonts^ORIGINAL OF
+022B7^⊷^\multimapdotbothB^\imageof^R^mathrel^txfonts^IMAGE OF
+022B8^⊸^\multimap^\multimap^R^mathrel^amssymb^/MULTIMAP a:
+022B9^⊹^^\hermitmatrix^B^mathord^^HERMITIAN CONJUGATE MATRIX
+022BA^⊺^\intercal^\intercal^B^mathbin^amssymb fourier^intercal
+022BB^⊻^\veebar^\veebar^B^mathbin^amssymb^logical or, bar below (large vee); exclusive disjunction
+022BC^⊼^\barwedge^\barwedge^B^mathbin^amssymb^logical NAND (bar over wedge)
+022BD^⊽^^\barvee^B^mathbin^^bar, vee (large vee)
+022BE^⊾^^\measuredrightangle^N^mathord^^right angle-measured [with arc]
+022BF^⊿^^\varlrtriangle^N^mathord^^RIGHT TRIANGLE
+022C0^⋀^\bigwedge^\bigwedge^L^mathop^^logical or operator
+022C1^⋁^\bigvee^\bigvee^L^mathop^^logical and operator
+022C2^⋂^\bigcap^\bigcap^L^mathop^^= \dint (oz), \dinter (oz), intersection operator
+022C3^⋃^\bigcup^\bigcup^L^mathop^^= \duni (oz), \dunion (oz), union operator
+022C4^⋄^\diamond^\smwhtdiamond^B^mathbin^^DIAMOND OPERATOR (white diamond)
+022C5^⋅^\cdot^\cdot^B^mathbin^^DOT OPERATOR (small middle dot)
+022C6^⋆^\star^\star^B^mathbin^^small star, filled, low
+022C7^⋇^\divideontimes^\divideontimes^B^mathbin^amssymb^division on times
+022C8^⋈^\bowtie^\bowtie^R^mathrel^^= \lrtimes (txfonts), BOWTIE
+022C9^⋉^\ltimes^\ltimes^B^mathbin^amssymb^times sign, left closed
+022CA^⋊^\rtimes^\rtimes^B^mathbin^amssymb^times sign, right closed
+022CB^⋋^\leftthreetimes^\leftthreetimes^B^mathbin^amssymb^LEFT SEMIDIRECT PRODUCT
+022CC^⋌^\rightthreetimes^\rightthreetimes^B^mathbin^amssymb^RIGHT SEMIDIRECT PRODUCT
+022CD^⋍^\backsimeq^\backsimeq^R^mathrel^amssymb^reverse similar, equals
+022CE^⋎^\curlyvee^\curlyvee^B^mathbin^amssymb^CURLY LOGICAL OR
+022CF^⋏^\curlywedge^\curlywedge^B^mathbin^amssymb^CURLY LOGICAL AND
+022D0^⋐^\Subset^\Subset^R^mathrel^amssymb^DOUBLE SUBSET
+022D1^⋑^\Supset^\Supset^R^mathrel^amssymb^DOUBLE SUPERSET
+022D2^⋒^\Cap^\Cap^B^mathbin^amssymb^/cap /doublecap b: DOUBLE INTERSECTION
+022D3^⋓^\Cup^\Cup^B^mathbin^amssymb^/cup /doublecup b: DOUBLE UNION
+022D4^⋔^\pitchfork^\pitchfork^R^mathrel^amssymb^PITCHFORK
+022D5^⋕^\hash^\equalparallel^R^mathrel^mathabx^parallel, equal; equal or parallel
+022D6^⋖^\lessdot^\lessdot^R^mathrel^amssymb^less than, with dot
+022D7^⋗^\gtrdot^\gtrdot^R^mathrel^amssymb^greater than, with dot
+022D8^⋘^\lll^\lll^R^mathrel^amssymb -mathabx^triple less-than
+022D9^⋙^\ggg^\ggg^R^mathrel^amssymb -mathabx^triple greater-than
+022DA^⋚^\lesseqgtr^\lesseqgtr^R^mathrel^amssymb^less, equals, greater
+022DB^⋛^\gtreqless^\gtreqless^R^mathrel^amssymb^greater, equals, less
+022DC^⋜^^\eqless^R^mathrel^^equal-or-less
+022DD^⋝^^\eqgtr^R^mathrel^^equal-or-greater
+022DE^⋞^\curlyeqprec^\curlyeqprec^R^mathrel^amssymb^curly equals, precedes
+022DF^⋟^\curlyeqsucc^\curlyeqsucc^R^mathrel^amssymb^curly equals, succeeds
+022E0^⋠^\npreceq^\npreccurlyeq^R^mathrel^amssymb wrisym^DOES NOT PRECEDE OR EQUAL
+022E1^⋡^\nsucceq^\nsucccurlyeq^R^mathrel^amssymb wrisym^not succeeds, curly equals
+022E2^⋢^\nsqsubseteq^\nsqsubseteq^R^mathrel^wrisym^not, square subset, equals
+022E3^⋣^\nsqsupseteq^\nsqsupseteq^R^mathrel^wrisym^not, square superset, equals
+022E4^⋤^^\sqsubsetneq^R^mathrel^^square subset, not equals
+022E5^⋥^^\sqsupsetneq^R^mathrel^^square superset, not equals
+022E6^⋦^\lnsim^\lnsim^R^mathrel^amssymb^less, not similar
+022E7^⋧^\gnsim^\gnsim^R^mathrel^amssymb^greater, not similar
+022E8^⋨^\precnsim^\precnsim^R^mathrel^amssymb^precedes, not similar
+022E9^⋩^\succnsim^\succnsim^R^mathrel^amssymb^succeeds, not similar
+022EA^⋪^\ntriangleleft^\ntriangleleft^R^mathrel^amssymb^= \NotLeftTriangle (wrisym), not left triangle
+022EB^⋫^\ntriangleright^\ntriangleright^R^mathrel^amssymb^= \NotRightTriangle (wrisym), not right triangle
+022EC^⋬^\ntrianglelefteq^\ntrianglelefteq^R^mathrel^amssymb^= \nunlhd (wrisym), not left triangle, equals
+022ED^⋭^\ntrianglerighteq^\ntrianglerighteq^R^mathrel^amssymb^= \nunrhd (wrisym), not right triangle, equals
+022EE^⋮^\vdots^\vdots^R^mathrel^^VERTICAL ELLIPSIS
+022EF^⋯^\cdots^\unicodecdots^R^mathord^^three dots, centered
+022F0^⋰^\iddots^\adots^R^mathrel^mathdots^= \adots (yhmath), three dots, ascending
+022F1^⋱^\ddots^\ddots^R^mathrel^^three dots, descending
+022F2^⋲^^\disin^R^mathrel^^ELEMENT OF WITH LONG HORIZONTAL STROKE
+022F3^⋳^^\varisins^R^mathrel^^ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
+022F4^⋴^^\isins^R^mathrel^^SMALL ELEMENT OF WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
+022F5^⋵^^\isindot^R^mathrel^^ELEMENT OF WITH DOT ABOVE
+022F6^⋶^\barin^\varisinobar^R^mathrel^mathabx^ELEMENT OF WITH OVERBAR
+022F7^⋷^^\isinobar^R^mathrel^^SMALL ELEMENT OF WITH OVERBAR
+022F8^⋸^^\isinvb^R^mathrel^^ELEMENT OF WITH UNDERBAR
+022F9^⋹^^\isinE^R^mathrel^^ELEMENT OF WITH TWO HORIZONTAL STROKES
+022FA^⋺^^\nisd^R^mathrel^^CONTAINS WITH LONG HORIZONTAL STROKE
+022FB^⋻^^\varnis^R^mathrel^^CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
+022FC^⋼^^\nis^R^mathrel^^SMALL CONTAINS WITH VERTICAL BAR AT END OF HORIZONTAL STROKE
+022FD^⋽^^\varniobar^R^mathrel^^CONTAINS WITH OVERBAR
+022FE^⋾^^\niobar^R^mathrel^^SMALL CONTAINS WITH OVERBAR
+022FF^⋿^^\bagmember^R^mathrel^^# \mathsf{E}, Z NOTATION BAG MEMBERSHIP
+02300^⌀^\diameter^\diameter^N^mathord^mathabx^# \varnothing (amssymb), DIAMETER SIGN
+02302^⌂^^\house^N^mathord^^HOUSE
+02305^⌅^^\varbarwedge^B^mathbin^^# \barwedge (amssymb), PROJECTIVE (bar over small wedge) not nand
+02306^⌆^^\vardoublebarwedge^B^mathbin^^# \doublebarwedge (amssymb), PERSPECTIVE (double bar over small wedge)
+02308^⌈^\lceil^\lceil^O^mathopen^^LEFT CEILING
+02309^⌉^\rceil^\rceil^C^mathclose^^RIGHT CEILING
+0230A^⌊^\lfloor^\lfloor^O^mathopen^^LEFT FLOOR
+0230B^⌋^\rfloor^\rfloor^C^mathclose^^RIGHT FLOOR
+02310^⌐^\invneg^\invnot^N^mathord^wasysym^reverse not
+02311^⌑^\wasylozenge^\sqlozenge^N^mathord^wasysym^SQUARE LOZENGE
+02312^⌒^^\profline^^mathord^^profile of a line
+02313^⌓^^\profsurf^^mathord^^profile of a surface
+02317^⌗^^\viewdata^^mathord^^VIEWDATA SQUARE
+02319^⌙^^\turnednot^N^mathord^^TURNED NOT SIGN
+0231C^⌜^\ulcorner^\ulcorner^O^mathopen^amsfonts^upper left corner
+0231D^⌝^\urcorner^\urcorner^C^mathclose^amsfonts^upper right corner
+0231E^⌞^\llcorner^\llcorner^O^mathopen^amsfonts^lower left corner
+0231F^⌟^\lrcorner^\lrcorner^C^mathclose^amsfonts^lower right corner
+02320^⌠^^\inttop^G^mathord^^TOP HALF INTEGRAL
+02321^⌡^^\intbottom^G^mathord^^BOTTOM HALF INTEGRAL
+02322^⌢^\frown^\frown^R^mathrel^^# \smallfrown, FROWN (down curve)
+02323^⌣^\smile^\smile^R^mathrel^^# \smallsmile, SMILE (up curve)
+0232C^⌬^^\varhexagonlrbonds^^mathord^^six carbon ring, corner down, double bonds lower right etc
+02332^⌲^^\conictaper^^mathord^^CONICAL TAPER
+02336^⌶^^\topbot^N^mathord^^APL FUNCTIONAL SYMBOL I-BEAM, top and bottom
+02337^⌷^^^^mathord^^APL FUNCTIONAL SYMBOL SQUISH QUAD
+02338^⌸^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD EQUAL
+02339^⌹^\APLinv^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUAD DIVIDE
+0233A^⌺^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD DIAMOND
+0233B^⌻^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD JOT
+0233C^⌼^^^^mathord^^# \APLcirc{\APLbox} (wasysym), APL FUNCTIONAL SYMBOL QUAD CIRCLE
+0233D^⌽^^\obar^B^mathbin^^# \APLvert{\Circle} (wasysym), x \obar (stmaryrd), APL FUNCTIONAL SYMBOL CIRCLE STILE, circle with vertical bar
+0233E^⌾^^^^mathord^^# \APLcirc{\Circle} (wasysym), APL FUNCTIONAL SYMBOL CIRCLE JOT
+0233F^⌿^\notslash^\APLnotslash^R^mathrel^wasysym^APL FUNCTIONAL SYMBOL SLASH BAR, solidus, bar through
+02340^⍀^\notbackslash^\APLnotbackslash^^mathord^wasysym^APL FUNCTIONAL SYMBOL BACKSLASH BAR
+02341^⍁^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD SLASH
+02342^⍂^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD BACKSLASH
+02343^⍃^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD LESS-THAN
+02344^⍄^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD GREATER-THAN
+02345^⍅^^^^mathord^^APL FUNCTIONAL SYMBOL LEFTWARDS VANE
+02346^⍆^^^^mathord^^APL FUNCTIONAL SYMBOL RIGHTWARDS VANE
+02347^⍇^\APLleftarrowbox^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUAD LEFTWARDS ARROW
+02348^⍈^\APLrightarrowbox^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUAD RIGHTWARDS ARROW
+02349^⍉^^^^mathord^^APL FUNCTIONAL SYMBOL CIRCLE BACKSLASH
+0234A^⍊^^^^mathord^^APL FUNCTIONAL SYMBOL DOWN TACK UNDERBAR
+0234B^⍋^^^^mathord^^# \APLvert{\APLup} (wasysym), APL FUNCTIONAL SYMBOL DELTA STILE
+0234C^⍌^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD DOWN CARET
+0234D^⍍^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD DELTA
+0234E^⍎^^^^mathord^^APL FUNCTIONAL SYMBOL DOWN TACK JOT
+0234F^⍏^^^^mathord^^APL FUNCTIONAL SYMBOL UPWARDS VANE
+02350^⍐^\APLuparrowbox^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUAD UPWARDS ARROW
+02351^⍑^^^^mathord^^APL FUNCTIONAL SYMBOL UP TACK OVERBAR
+02352^⍒^^^^mathord^wasysym^# \APLvert{\APLdown} (wasysym), APL FUNCTIONAL SYMBOL DEL STILE
+02353^⍓^^\APLboxupcaret^^mathord^^APL FUNCTIONAL SYMBOL QUAD UP CARET
+02354^⍔^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD DEL
+02355^⍕^^^^mathord^^APL FUNCTIONAL SYMBOL UP TACK JOT
+02356^⍖^^^^mathord^^APL FUNCTIONAL SYMBOL DOWNWARDS VANE
+02357^⍗^\APLdownarrowbox^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUAD DOWNWARDS ARROW
+02358^⍘^^^^mathord^^APL FUNCTIONAL SYMBOL QUOTE UNDERBAR
+02359^⍙^^^^mathord^^APL FUNCTIONAL SYMBOL DELTA UNDERBAR
+0235A^⍚^^^^mathord^^APL FUNCTIONAL SYMBOL DIAMOND UNDERBAR
+0235B^⍛^^^^mathord^^APL FUNCTIONAL SYMBOL JOT UNDERBAR
+0235C^⍜^^^^mathord^^APL FUNCTIONAL SYMBOL CIRCLE UNDERBAR
+0235D^⍝^\APLcomment^^^mathord^wasysym^APL FUNCTIONAL SYMBOL UP SHOE JOT
+0235E^⍞^\APLinput^^^mathord^wasysym^APL FUNCTIONAL SYMBOL QUOTE QUAD
+0235F^⍟^\APLlog^^^mathord^wasysym^APL FUNCTIONAL SYMBOL CIRCLE STAR
+02360^⍠^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD COLON
+02361^⍡^^^^mathord^^APL FUNCTIONAL SYMBOL UP TACK DIAERESIS
+02362^⍢^^^^mathord^^APL FUNCTIONAL SYMBOL DEL DIAERESIS
+02363^⍣^^^^mathord^^APL FUNCTIONAL SYMBOL STAR DIAERESIS
+02364^⍤^^^^mathord^^APL FUNCTIONAL SYMBOL JOT DIAERESIS
+02365^⍥^^^^mathord^^APL FUNCTIONAL SYMBOL CIRCLE DIAERESIS
+02366^⍦^^^^mathord^^APL FUNCTIONAL SYMBOL DOWN SHOE STILE
+02367^⍧^^^^mathord^^APL FUNCTIONAL SYMBOL LEFT SHOE STILE
+02368^⍨^^^^mathord^^APL FUNCTIONAL SYMBOL TILDE DIAERESIS
+02369^⍩^^^^mathord^^APL FUNCTIONAL SYMBOL GREATER-THAN DIAERESIS
+0236A^⍪^^^^mathord^^APL FUNCTIONAL SYMBOL COMMA BAR
+0236B^⍫^^^^mathord^^# \APLnot{\APLdown} (wasysym), APL FUNCTIONAL SYMBOL DEL TILDE
+0236C^⍬^^^^mathord^^APL FUNCTIONAL SYMBOL ZILDE
+0236D^⍭^^^^mathord^^APL FUNCTIONAL SYMBOL STILE TILDE
+0236E^⍮^^^^mathord^^APL FUNCTIONAL SYMBOL SEMICOLON UNDERBAR
+0236F^⍯^^^^mathord^^APL FUNCTIONAL SYMBOL QUAD NOT EQUAL
+02370^⍰^^\APLboxquestion^^mathord^^APL FUNCTIONAL SYMBOL QUAD QUESTION
+02371^⍱^^^^mathord^^APL FUNCTIONAL SYMBOL DOWN CARET TILDE
+02372^⍲^^^^mathord^^APL FUNCTIONAL SYMBOL UP CARET TILDE
+02373^⍳^^^^mathord^^APL FUNCTIONAL SYMBOL IOTA
+02374^⍴^^^^mathord^^APL FUNCTIONAL SYMBOL RHO
+02375^⍵^^^^mathord^^APL FUNCTIONAL SYMBOL OMEGA
+02376^⍶^^^^mathord^^APL FUNCTIONAL SYMBOL ALPHA UNDERBAR
+02377^⍷^^^^mathord^^APL FUNCTIONAL SYMBOL EPSILON UNDERBAR
+02378^⍸^^^^mathord^^APL FUNCTIONAL SYMBOL IOTA UNDERBAR
+02379^⍹^^^^mathord^^APL FUNCTIONAL SYMBOL OMEGA UNDERBAR
+0237C^⍼^^\rangledownzigzagarrow^^mathord^^RIGHT ANGLE WITH DOWNWARDS ZIGZAG ARROW
+02394^⎔^^\hexagon^N^mathord^^horizontal benzene ring [hexagon flat open]
+0239B^⎛^^\lparenuend^G^mathord^^LEFT PARENTHESIS UPPER HOOK
+0239C^⎜^^\lparenextender^G^mathord^^LEFT PARENTHESIS EXTENSION
+0239D^⎝^^\lparenlend^G^mathord^^LEFT PARENTHESIS LOWER HOOK
+0239E^⎞^^\rparenuend^G^mathord^^RIGHT PARENTHESIS UPPER HOOK
+0239F^⎟^^\rparenextender^G^mathord^^RIGHT PARENTHESIS EXTENSION
+023A0^⎠^^\rparenlend^G^mathord^^RIGHT PARENTHESIS LOWER HOOK
+023A1^⎡^^\lbrackuend^G^mathord^^LEFT SQUARE BRACKET UPPER CORNER
+023A2^⎢^^\lbrackextender^G^mathord^^LEFT SQUARE BRACKET EXTENSION
+023A3^⎣^^\lbracklend^G^mathord^^LEFT SQUARE BRACKET LOWER CORNER
+023A4^⎤^^\rbrackuend^G^mathord^^RIGHT SQUARE BRACKET UPPER CORNER
+023A5^⎥^^\rbrackextender^G^mathord^^RIGHT SQUARE BRACKET EXTENSION
+023A6^⎦^^\rbracklend^G^mathord^^RIGHT SQUARE BRACKET LOWER CORNER
+023A7^⎧^^\lbraceuend^G^mathord^^LEFT CURLY BRACKET UPPER HOOK
+023A8^⎨^^\lbracemid^G^mathord^^LEFT CURLY BRACKET MIDDLE PIECE
+023A9^⎩^^\lbracelend^G^mathord^^LEFT CURLY BRACKET LOWER HOOK
+023AA^⎪^^\vbraceextender^G^mathord^^CURLY BRACKET EXTENSION
+023AB^⎫^^\rbraceuend^G^mathord^^RIGHT CURLY BRACKET UPPER HOOK
+023AC^⎬^^\rbracemid^G^mathord^^RIGHT CURLY BRACKET MIDDLE PIECE
+023AD^⎭^^\rbracelend^G^mathord^^RIGHT CURLY BRACKET LOWER HOOK
+023AE^⎮^^\intextender^G^mathord^^INTEGRAL EXTENSION
+023AF^⎯^^\harrowextender^G^mathord^^HORIZONTAL LINE EXTENSION (used to extend arrows)
+023B0^⎰^^\lmoustache^R^mathord^^? \lmoustache, UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION
+023B1^⎱^^\rmoustache^R^mathord^^? \rmoustache, UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION
+023B2^⎲^^\sumtop^G^mathord^^SUMMATION TOP
+023B3^⎳^^\sumbottom^G^mathord^^SUMMATION BOTTOM
+023B4^⎴^^\overbracket^N^mathover^^TOP SQUARE BRACKET
+023B5^⎵^^\underbracket^N^mathunder^^BOTTOM SQUARE BRACKET
+023B6^⎶^^\bbrktbrk^N^mathord^^BOTTOM SQUARE BRACKET OVER TOP SQUARE BRACKET
+023B7^⎷^^\sqrtbottom^G^mathord^^RADICAL SYMBOL BOTTOM
+023B8^⎸^^\lvboxline^^mathord^^LEFT VERTICAL BOX LINE
+023B9^⎹^^\rvboxline^^mathord^^RIGHT VERTICAL BOX LINE
+023CE^⏎^^\varcarriagereturn^^mathord^^RETURN SYMBOL
+023D0^⏐^^^G^mathord^^VERTICAL LINE EXTENSION (VERTICAL LINE EXTENSION)
+023DC^⏜^\overparen^\overparen^N^mathover^wrisym^= \wideparen (yhmath mathabx fourier), TOP PARENTHESIS (mathematical use)
+023DD^⏝^\underparen^\underparen^N^mathunder^wrisym^BOTTOM PARENTHESIS (mathematical use)
+023DE^⏞^\overbrace^\overbrace^N^mathover^^TOP CURLY BRACKET (mathematical use)
+023DF^⏟^\underbrace^\underbrace^N^mathunder^^BOTTOM CURLY BRACKET (mathematical use)
+023E0^⏠^^\obrbrak^N^mathord^^TOP TORTOISE SHELL BRACKET (mathematical use)
+023E1^⏡^^\ubrbrak^N^mathord^^BOTTOM TORTOISE SHELL BRACKET (mathematical use)
+023E2^⏢^^\trapezium^N^mathord^^WHITE TRAPEZIUM
+023E3^⏣^^\benzenr^N^mathord^^BENZENE RING WITH CIRCLE
+023E4^⏤^^\strns^N^mathord^^STRAIGHTNESS
+023E5^⏥^^\fltns^N^mathord^^FLATNESS
+023E6^⏦^^\accurrent^N^mathord^^# \AC (wasysym), AC CURRENT
+023E7^⏧^^\elinters^N^mathord^^ELECTRICAL INTERSECTION
+024C8^Ⓢ^^^N^mathord^^oS capital S in circle
+02506^┆^^\bdtriplevdash^^mathord^^doubly broken vert
+02580^▀^^\blockuphalf^^mathord^^UPPER HALF BLOCK
+02584^▄^^\blocklowhalf^^mathord^^LOWER HALF BLOCK
+02588^█^^\blockfull^^mathord^^FULL BLOCK
+0258C^▌^^\blocklefthalf^^mathord^^LEFT HALF BLOCK
+02590^▐^^\blockrighthalf^^mathord^^RIGHT HALF BLOCK
+02591^░^^\blockqtrshaded^^mathord^^25\% shaded block
+02592^▒^^\blockhalfshaded^^mathord^^50\% shaded block
+02593^▓^^\blockthreeqtrshaded^^mathord^^75\% shaded block
+025A0^■^^\mdlgblksquare^N^mathord^^square, filled
+025A1^□^^\mdlgwhtsquare^N^mathord^^square, open
+025A2^▢^^\squoval^^mathord^^WHITE SQUARE WITH ROUNDED CORNERS
+025A3^▣^^\blackinwhitesquare^^mathord^^WHITE SQUARE CONTAINING BLACK SMALL SQUARE
+025A4^▤^^\squarehfill^^mathord^^square, horizontal rule filled
+025A5^▥^^\squarevfill^^mathord^^square, vertical rule filled
+025A6^▦^^\squarehvfill^^mathord^^SQUARE WITH ORTHOGONAL CROSSHATCH FILL
+025A7^▧^^\squarenwsefill^^mathord^^square, nw-to-se rule filled
+025A8^▨^^\squareneswfill^^mathord^^square, ne-to-sw rule filled
+025A9^▩^^\squarecrossfill^^mathord^^SQUARE WITH DIAGONAL CROSSHATCH FILL
+025AA^▪^^\smblksquare^N^mathord^^sq bullet, filled
+025AB^▫^^\smwhtsquare^N^mathord^^WHITE SMALL SQUARE
+025AC^▬^^\hrectangleblack^^mathord^^BLACK RECTANGLE
+025AD^▭^^\hrectangle^N^mathord^^horizontal rectangle, open
+025AE^▮^^\vrectangleblack^N^mathord^^BLACK VERTICAL RECTANGLE
+025AF^▯^^\vrectangle^N^mathord^^rectangle, white (vertical)
+025B0^▰^^\parallelogramblack^^mathord^^BLACK PARALLELOGRAM
+025B1^▱^^\parallelogram^N^mathord^^parallelogram, open
+025B2^▲^^\bigblacktriangleup^B^mathord^^BLACK UP-POINTING TRIANGLE
+025B3^△^\bigtriangleup^\bigtriangleup^B^mathbin^-stmaryrd^= \triangle (amsfonts), # \vartriangle (amssymb), big up triangle, open
+025B4^▴^\blacktriangleup^\blacktriangle^B^mathbin^mathabx^up triangle, filled
+025B5^▵^\smalltriangleup^\vartriangle^B^mathbin^mathabx^# \vartriangle (amssymb), small up triangle, open
+025B6^▶^\RHD^\blacktriangleright^B^mathbin^wasysym^= \blacktriangleright (fourier -mathabx), (large) right triangle, filled
+025B7^▷^\rhd^\triangleright^B^mathbin^amssymb wasysym^= \rres (oz), = \RightTriangle (wrisym), (large) right triangle, open; z notation range restriction
+025B8^▸^\blacktriangleright^\smallblacktriangleright^B^mathbin^mathabx -fourier^right triangle, filled
+025B9^▹^\smalltriangleright^\smalltriangleright^B^mathbin^mathabx^# \triangleright, x \triangleright (mathabx), right triangle, open
+025BA^►^^\blackpointerright^^mathord^^BLACK RIGHT-POINTING POINTER
+025BB^▻^^\whitepointerright^^mathord^^# \triangleright (mathabx), WHITE RIGHT-POINTING POINTER
+025BC^▼^^\bigblacktriangledown^B^mathord^^big down triangle, filled
+025BD^▽^\bigtriangledown^\bigtriangledown^B^mathbin^-stmaryrd^big down triangle, open
+025BE^▾^\blacktriangledown^\blacktriangledown^B^mathbin^mathabx^BLACK DOWN-POINTING SMALL TRIANGLE
+025BF^▿^\smalltriangledown^\triangledown^B^mathbin^mathabx^# \triangledown (amssymb), WHITE DOWN-POINTING SMALL TRIANGLE
+025C0^◀^\LHD^\blacktriangleleft^B^mathbin^wasysym^= \blacktriangleleft (fourier -mathabx), (large) left triangle, filled
+025C1^◁^\lhd^\triangleleft^B^mathbin^amssymb wasysym^= \dres (oz), = \LeftTriangle (wrisym), (large) left triangle, open; z notation domain restriction
+025C2^◂^\blacktriangleleft^\smallblacktriangleleft^B^mathbin^mathabx -fourier^left triangle, filled
+025C3^◃^\smalltriangleleft^\smalltriangleleft^B^mathbin^mathabx^# \triangleleft, x \triangleleft (mathabx), left triangle, open
+025C4^◄^^\blackpointerleft^B^mathord^^BLACK LEFT-POINTING POINTER
+025C5^◅^^\whitepointerleft^B^mathord^^# \triangleleft (mathabx), WHITE LEFT-POINTING POINTER
+025C6^◆^\Diamondblack^\mdlgblkdiamond^N^mathord^txfonts^BLACK DIAMOND
+025C7^◇^\Diamond^\mdlgwhtdiamond^N^mathord^amssymb^WHITE DIAMOND; diamond, open
+025C8^◈^^\blackinwhitediamond^N^mathord^^WHITE DIAMOND CONTAINING BLACK SMALL DIAMOND
+025C9^◉^^\fisheye^N^mathord^^FISHEYE
+025CA^◊^\lozenge^\mdlgwhtlozenge^B^mathord^amssymb^LOZENGE or total mark
+025CB^○^\Circle^\mdlgwhtcircle^B^mathbin^wasysym^medium large circle
+025CC^◌^^\dottedcircle^^mathord^^DOTTED CIRCLE
+025CD^◍^^\circlevertfill^^mathord^^CIRCLE WITH VERTICAL FILL
+025CE^◎^^\bullseye^N^mathord^^# \circledcirc (amssymb), BULLSEYE
+025CF^●^\CIRCLE^\mdlgblkcircle^N^mathord^wasysym^circle, filled
+025D0^◐^\LEFTcircle^\circlelefthalfblack^^mathord^wasysym^circle, filled left half [harvey ball]
+025D1^◑^\RIGHTcircle^\circlerighthalfblack^^mathord^wasysym^circle, filled right half
+025D2^◒^^\circlebottomhalfblack^^mathord^^circle, filled bottom half
+025D3^◓^^\circletophalfblack^^mathord^^circle, filled top half
+025D4^◔^^\circleurquadblack^^mathord^^CIRCLE WITH UPPER RIGHT QUADRANT BLACK
+025D5^◕^^\blackcircleulquadwhite^^mathord^^CIRCLE WITH ALL BUT UPPER LEFT QUADRANT BLACK
+025D6^◖^\LEFTCIRCLE^\blacklefthalfcircle^N^mathord^wasysym^LEFT HALF BLACK CIRCLE
+025D7^◗^\RIGHTCIRCLE^\blackrighthalfcircle^N^mathord^wasysym^RIGHT HALF BLACK CIRCLE
+025D8^◘^^\inversebullet^^mathord^^INVERSE BULLET
+025D9^◙^^\inversewhitecircle^^mathord^^INVERSE WHITE CIRCLE
+025DA^◚^^\invwhiteupperhalfcircle^^mathord^^UPPER HALF INVERSE WHITE CIRCLE
+025DB^◛^^\invwhitelowerhalfcircle^^mathord^^LOWER HALF INVERSE WHITE CIRCLE
+025DC^◜^^\ularc^^mathord^^UPPER LEFT QUADRANT CIRCULAR ARC
+025DD^◝^^\urarc^^mathord^^UPPER RIGHT QUADRANT CIRCULAR ARC
+025DE^◞^^\lrarc^^mathord^^LOWER RIGHT QUADRANT CIRCULAR ARC
+025DF^◟^^\llarc^^mathord^^LOWER LEFT QUADRANT CIRCULAR ARC
+025E0^◠^^\topsemicircle^^mathord^^UPPER HALF CIRCLE
+025E1^◡^^\botsemicircle^^mathord^^LOWER HALF CIRCLE
+025E2^◢^^\lrblacktriangle^N^mathord^^lower right triangle, filled
+025E3^◣^^\llblacktriangle^N^mathord^^lower left triangle, filled
+025E4^◤^^\ulblacktriangle^N^mathord^^upper left triangle, filled
+025E5^◥^^\urblacktriangle^N^mathord^^upper right triangle, filled
+025E6^◦^^\smwhtcircle^B^mathord^^WHITE BULLET
+025E7^◧^^\squareleftblack^^mathord^^square, filled left half
+025E8^◨^^\squarerightblack^^mathord^^square, filled right half
+025E9^◩^^\squareulblack^^mathord^^square, filled top left corner
+025EA^◪^^\squarelrblack^^mathord^^square, filled bottom right corner
+025EB^◫^\boxbar^\boxbar^B^mathbin^stmaryrd txfonts^vertical bar in box
+025EC^◬^^\trianglecdot^B^mathord^^triangle with centered dot
+025ED^◭^^\triangleleftblack^^mathord^^UP-POINTING TRIANGLE WITH LEFT HALF BLACK
+025EE^◮^^\trianglerightblack^^mathord^^UP-POINTING TRIANGLE WITH RIGHT HALF BLACK
+025EF^◯^^\lgwhtcircle^N^mathord^^LARGE CIRCLE
+025F0^◰^^\squareulquad^^mathord^^WHITE SQUARE WITH UPPER LEFT QUADRANT
+025F1^◱^^\squarellquad^^mathord^^WHITE SQUARE WITH LOWER LEFT QUADRANT
+025F2^◲^^\squarelrquad^^mathord^^WHITE SQUARE WITH LOWER RIGHT QUADRANT
+025F3^◳^^\squareurquad^^mathord^^WHITE SQUARE WITH UPPER RIGHT QUADRANT
+025F4^◴^^\circleulquad^^mathord^^WHITE CIRCLE WITH UPPER LEFT QUADRANT
+025F5^◵^^\circlellquad^^mathord^^WHITE CIRCLE WITH LOWER LEFT QUADRANT
+025F6^◶^^\circlelrquad^^mathord^^WHITE CIRCLE WITH LOWER RIGHT QUADRANT
+025F7^◷^^\circleurquad^^mathord^^WHITE CIRCLE WITH UPPER RIGHT QUADRANT
+025F8^◸^^\ultriangle^B^mathord^^UPPER LEFT TRIANGLE
+025F9^◹^^\urtriangle^B^mathord^^UPPER RIGHT TRIANGLE
+025FA^◺^^\lltriangle^B^mathord^^LOWER LEFT TRIANGLE
+025FB^◻^\square^\mdwhtsquare^B^mathord^amssymb -fourier^WHITE MEDIUM SQUARE
+025FC^◼^\blacksquare^\mdblksquare^B^mathord^amssymb -fourier^BLACK MEDIUM SQUARE
+025FD^◽^^\mdsmwhtsquare^B^mathord^^WHITE MEDIUM SMALL SQUARE
+025FE^◾^^\mdsmblksquare^B^mathord^^BLACK MEDIUM SMALL SQUARE
+025FF^◿^^\lrtriangle^B^mathord^^LOWER RIGHT TRIANGLE
+02605^★^\bigstar^\bigstar^B^mathord^amssymb^star, filled
+02606^☆^^\bigwhitestar^B^mathord^^star, open
+02609^☉^\Sun^\astrosun^N^mathord^mathabx^SUN
+0260C^☌^^^N^mathord^wasysym^text \CONJUNCTION (wasysym), CONJUNCTION
+02610^☐^\Square^^^mathord^wasysym^BALLOT BOX
+02611^☑^\CheckedBox^^^mathord^wasysym^t \Checkedbox (marvosym), BALLOT BOX WITH CHECK
+02612^☒^\XBox^^N^mathord^wasysym^t \Crossedbox (marvosym), BALLOT BOX WITH X
+02615^☕^\steaming^^^mathord^arevmath^HOT BEVERAGE
+0261E^☞^\pointright^^^mathord^arevmath^WHITE RIGHT POINTING INDEX
+02620^☠^\skull^^^mathord^arevmath^SKULL AND CROSSBONES
+02621^☡^^\danger^^mathord^^CAUTION SIGN, dangerous bend
+02622^☢^\radiation^^^mathord^arevmath^RADIOACTIVE SIGN
+02623^☣^\biohazard^^^mathord^arevmath^BIOHAZARD SIGN
+0262F^☯^\yinyang^^^mathord^arevmath^YIN YANG
+02639^☹^\frownie^^^mathord^wasysym^= \sadface (arevmath), WHITE FROWNING FACE
+0263A^☺^\smiley^^^mathord^wasysym^= \smileface (arevmath), WHITE SMILING FACE
+0263B^☻^\blacksmiley^\blacksmiley^^mathord^wasysym^= \invsmileface (arevmath), BLACK SMILING FACE
+0263C^☼^\sun^\sun^^mathord^wasysym^WHITE SUN WITH RAYS
+0263D^☽^\rightmoon^\rightmoon^N^mathord^wasysym mathabx^FIRST QUARTER MOON
+0263E^☾^\leftmoon^\leftmoon^N^mathord^wasysym mathabx^LAST QUARTER MOON
+0263F^☿^\mercury^^N^mathord^wasysym^= \Mercury (mathabx), MERCURY
+02640^♀^\female^\female^N^mathord^wasysym^= \Venus (mathabx), = \girl (mathabx), venus, female
+02641^♁^\earth^^N^mathord^wasysym^= \varEarth (mathabx), EARTH
+02642^♂^\male^\male^N^mathord^wasysym^= \Mars (mathabx), = \boy (mathabx), mars, male
+02643^♃^\jupiter^^N^mathord^wasysym^= \Jupiter (mathabx), JUPITER
+02644^♄^\saturn^^N^mathord^wasysym^= \Saturn (mathabx), SATURN
+02645^♅^\uranus^^^mathord^wasysym^= \Uranus (mathabx), URANUS
+02646^♆^\neptune^^N^mathord^wasysym^= \Neptune (mathabx), NEPTUNE
+02647^♇^\pluto^^N^mathord^wasysym^= \Pluto (mathabx), PLUTO
+02648^♈^\aries^^N^mathord^wasysym^= \Aries (mathabx), ARIES
+02649^♉^\taurus^^N^mathord^wasysym^= \Taurus (mathabx), TAURUS
+0264A^♊^\gemini^^^mathord^wasysym^= \Gemini (mathabx), GEMINI
+0264B^♋^\cancer^^^mathord^wasysym^CANCER
+0264C^♌^\leo^^^mathord^wasysym^= \Leo (mathabx), LEO
+0264D^♍^\virgo^^^mathord^wasysym^VIRGO
+0264E^♎^\libra^^^mathord^wasysym^= \Libra (mathabx), LIBRA
+0264F^♏^\scorpio^^^mathord^wasysym^= \Scorpio (mathabx), SCORPIUS
+02650^♐^\sagittarius^^^mathord^wasysym^SAGITTARIUS
+02651^♑^\capricornus^^^mathord^wasysym^CAPRICORN
+02652^♒^\aquarius^^^mathord^wasysym^AQUARIUS
+02653^♓^\pisces^^^mathord^wasysym^PISCES
+02660^♠^\spadesuit^\spadesuit^N^mathord^^spades suit symbol
+02661^♡^\heartsuit^\heartsuit^N^mathord^^heart suit symbol
+02662^♢^\diamondsuit^\diamondsuit^N^mathord^^diamond suit symbol
+02663^♣^\clubsuit^\clubsuit^N^mathord^^club suit symbol
+02664^♤^\varspadesuit^\varspadesuit^N^mathord^txfonts^= \varspade (arevmath), spade, white (card suit)
+02665^♥^\varheartsuit^\varheartsuit^N^mathord^txfonts^= \varheart (arevmath), filled heart (card suit)
+02666^♦^\vardiamondsuit^\vardiamondsuit^N^mathord^txfonts^= \vardiamond (arevmath), filled diamond (card suit)
+02667^♧^\varclubsuit^\varclubsuit^N^mathord^txfonts^= \varclub (arevmath), club, white (card suit)
+02669^♩^\quarternote^\quarternote^N^mathord^arevmath wasysym^music note (sung text sign)
+0266A^♪^\eighthnote^\eighthnote^^mathord^arevmath^EIGHTH NOTE
+0266B^♫^\twonotes^\twonotes^^mathord^wasysym^BEAMED EIGHTH NOTES
+0266C^♬^\sixteenthnote^^^mathord^arevmath^BEAMED SIXTEENTH NOTES
+0266D^♭^\flat^\flat^N^mathord^^musical flat
+0266E^♮^\natural^\natural^N^mathord^^music natural
+0266F^♯^\sharp^\sharp^N^mathord^^= \# (oz), MUSIC SHARP SIGN, z notation infix bag count
+0267B^♻^\recycle^^^mathord^arevmath^BLACK UNIVERSAL RECYCLING SYMBOL
+0267E^♾^^\acidfree^^mathord^^PERMANENT PAPER SIGN
+02680^⚀^^\dicei^N^mathord^^DIE FACE-1
+02681^⚁^^\diceii^N^mathord^^DIE FACE-2
+02682^⚂^^\diceiii^N^mathord^^DIE FACE-3
+02683^⚃^^\diceiv^N^mathord^^DIE FACE-4
+02684^⚄^^\dicev^N^mathord^^DIE FACE-5
+02685^⚅^^\dicevi^N^mathord^^DIE FACE-6
+02686^⚆^^\circledrightdot^N^mathord^^WHITE CIRCLE WITH DOT RIGHT
+02687^⚇^^\circledtwodots^N^mathord^^WHITE CIRCLE WITH TWO DOTS
+02688^⚈^^\blackcircledrightdot^N^mathord^^BLACK CIRCLE WITH WHITE DOT RIGHT
+02689^⚉^^\blackcircledtwodots^N^mathord^^BLACK CIRCLE WITH TWO WHITE DOTS
+02693^⚓^\anchor^^^mathord^arevmath^ANCHOR
+02694^⚔^\swords^^^mathord^arevmath^CROSSED SWORDS
+026A0^⚠^\warning^^^mathord^arevmath^WARNING SIGN
+026A5^⚥^^\Hermaphrodite^^mathord^^MALE AND FEMALE SIGN
+026AA^⚪^\medcirc^\mdwhtcircle^N^mathord^txfonts^MEDIUM WHITE CIRCLE
+026AB^⚫^\medbullet^\mdblkcircle^N^mathord^txfonts^MEDIUM BLACK CIRCLE
+026AC^⚬^^\mdsmwhtcircle^N^mathord^^MEDIUM SMALL WHITE CIRCLE
+026B2^⚲^^\neuter^N^mathord^^NEUTER
+0270E^✎^\pencil^^^mathord^arevmath^LOWER RIGHT PENCIL
+02713^✓^\checkmark^\checkmark^N^mathord^amsfonts^= \ballotcheck (arevmath), tick, CHECK MARK
+02717^✗^\ballotx^^^mathord^arevmath^BALLOT X
+02720^✠^\maltese^\maltese^N^mathord^amsfonts^MALTESE CROSS
+0272A^✪^^\circledstar^N^mathord^^CIRCLED WHITE STAR
+02736^✶^^\varstar^N^mathord^^SIX POINTED BLACK STAR
+0273D^✽^^\dingasterisk^^mathord^^HEAVY TEARDROP-SPOKED ASTERISK
+02772^❲^^\lbrbrak^O^mathopen^^LIGHT LEFT TORTOISE SHELL BRACKET ORNAMENT
+02773^❳^^\rbrbrak^C^mathclose^^LIGHT RIGHT TORTOISE SHELL BRACKET ORNAMENT
+0279B^➛^^\draftingarrow^^mathord^^right arrow with bold head (drafting)
+027A2^➢^\arrowbullet^^^mathord^arevmath^THREE-D TOP-LIGHTED RIGHTWARDS ARROWHEAD
+027C0^⟀^^\threedangle^N^mathord^^THREE DIMENSIONAL ANGLE
+027C1^⟁^^\whiteinwhitetriangle^N^mathord^^WHITE TRIANGLE CONTAINING SMALL WHITE TRIANGLE
+027C2^⟂^\perp^\perp^R^mathrel^^PERPENDICULAR
+027C3^⟃^^\subsetcirc^R^mathord^^OPEN SUBSET
+027C4^⟄^^\supsetcirc^R^mathord^^OPEN SUPERSET
+027C5^⟅^\Lbag^\lbag^R^mathopen^stmaryrd txfonts^= \lbag (stmaryrd -oz), LEFT S-SHAPED BAG DELIMITER
+027C6^⟆^\Rbag^\rbag^R^mathclose^stmaryrd txfonts^= \rbag (stmaryrd -oz), RIGHT S-SHAPED BAG DELIMITER
+027C7^⟇^^\veedot^R^mathbin^^OR WITH DOT INSIDE
+027C8^⟈^^\bsolhsub^R^mathrel^^REVERSE SOLIDUS PRECEDING SUBSET
+027C9^⟉^^\suphsol^R^mathrel^^SUPERSET PRECEDING SOLIDUS
+027CC^⟌^^\longdivision^^mathopen^^LONG DIVISION
+027D0^⟐^\Diamonddot^\diamondcdot^N^mathord^txfonts^WHITE DIAMOND WITH CENTRED DOT
+027D1^⟑^^\wedgedot^B^mathbin^^AND WITH DOT
+027D2^⟒^^\upin^R^mathrel^^ELEMENT OF OPENING UPWARDS
+027D3^⟓^^\pullback^R^mathrel^^LOWER RIGHT CORNER WITH DOT
+027D4^⟔^^\pushout^R^mathrel^^UPPER LEFT CORNER WITH DOT
+027D5^⟕^^\leftouterjoin^L^mathop^^LEFT OUTER JOIN
+027D6^⟖^^\rightouterjoin^L^mathop^^RIGHT OUTER JOIN
+027D7^⟗^^\fullouterjoin^L^mathop^^FULL OUTER JOIN
+027D8^⟘^^\bigbot^L^mathop^^LARGE UP TACK
+027D9^⟙^^\bigtop^L^mathop^^LARGE DOWN TACK
+027DA^⟚^^\DashVDash^R^mathrel^^LEFT AND RIGHT DOUBLE TURNSTILE
+027DB^⟛^^\dashVdash^R^mathrel^^LEFT AND RIGHT TACK
+027DC^⟜^\multimapinv^\multimapinv^R^mathrel^txfonts^LEFT MULTIMAP
+027DD^⟝^^\vlongdash^R^mathrel^^long left tack
+027DE^⟞^^\longdashv^R^mathrel^^long right tack
+027DF^⟟^^\cirbot^R^mathrel^^UP TACK WITH CIRCLE ABOVE
+027E0^⟠^^\lozengeminus^B^mathbin^^LOZENGE DIVIDED BY HORIZONTAL RULE
+027E1^⟡^^\concavediamond^B^mathbin^^WHITE CONCAVE-SIDED DIAMOND
+027E2^⟢^^\concavediamondtickleft^B^mathbin^^WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
+027E3^⟣^^\concavediamondtickright^B^mathbin^^WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
+027E4^⟤^^\whitesquaretickleft^B^mathbin^^WHITE SQUARE WITH LEFTWARDS TICK
+027E5^⟥^^\whitesquaretickright^B^mathbin^^WHITE SQUARE WITH RIGHTWARDS TICK
+027E6^⟦^\llbracket^\lBrack^O^mathopen^stmaryrd wrisym kpfonts fourier^= \Lbrack (mathbbol), = \lbag (oz -stmaryrd), MATHEMATICAL LEFT WHITE SQUARE BRACKET
+027E7^⟧^\rrbracket^\rBrack^C^mathclose^stmaryrd wrisym kpfonts fourier^= \Rbrack (mathbbol), = \rbag (oz -stmaryrd), MATHEMATICAL RIGHT WHITE SQUARE BRACKET
+027E8^⟨^\langle^\langle^O^mathopen^^MATHEMATICAL LEFT ANGLE BRACKET
+027E9^⟩^\rangle^\rangle^C^mathclose^^MATHEMATICAL RIGHT ANGLE BRACKET
+027EA^⟪^\lang^\lAngle^O^mathopen^oz^MATHEMATICAL LEFT DOUBLE ANGLE BRACKET, z notation left chevron bracket
+027EB^⟫^\rang^\rAngle^C^mathclose^oz^MATHEMATICAL RIGHT DOUBLE ANGLE BRACKET, z notation right chevron bracket
+027EC^⟬^^\Lbrbrak^O^mathopen^^MATHEMATICAL LEFT WHITE TORTOISE SHELL BRACKET
+027ED^⟭^^\Rbrbrak^C^mathclose^^MATHEMATICAL RIGHT WHITE TORTOISE SHELL BRACKET
+027EE^⟮^\lgroup^^O^mathopen^^MATHEMATICAL LEFT FLATTENED PARENTHESIS
+027EF^⟯^\rgroup^^C^mathclose^^MATHEMATICAL RIGHT FLATTENED PARENTHESIS
+027F0^⟰^^\UUparrow^R^mathrel^^UPWARDS QUADRUPLE ARROW
+027F1^⟱^^\DDownarrow^R^mathrel^^DOWNWARDS QUADRUPLE ARROW
+027F2^⟲^^\acwgapcirclearrow^R^mathrel^^ANTICLOCKWISE GAPPED CIRCLE ARROW
+027F3^⟳^^\cwgapcirclearrow^R^mathrel^^CLOCKWISE GAPPED CIRCLE ARROW
+027F4^⟴^^\rightarrowonoplus^R^mathrel^^RIGHT ARROW WITH CIRCLED PLUS
+027F5^⟵^\longleftarrow^\longleftarrow^R^mathrel^^LONG LEFTWARDS ARROW
+027F6^⟶^\longrightarrow^\longrightarrow^R^mathrel^^LONG RIGHTWARDS ARROW
+027F7^⟷^\longleftrightarrow^\longleftrightarrow^R^mathrel^^LONG LEFT RIGHT ARROW
+027F8^⟸^\Longleftarrow^\Longleftarrow^R^mathrel^^= \impliedby (amsmath), LONG LEFTWARDS DOUBLE ARROW
+027F9^⟹^\Longrightarrow^\Longrightarrow^R^mathrel^^= \implies (amsmath), LONG RIGHTWARDS DOUBLE ARROW
+027FA^⟺^\Longleftrightarrow^\Longleftrightarrow^R^mathrel^^= \iff (oz), LONG LEFT RIGHT DOUBLE ARROW
+027FB^⟻^\longmapsfrom^\longmapsfrom^R^mathrel^stmaryrd^= \longmappedfrom (kpfonts), LONG LEFTWARDS ARROW FROM BAR
+027FC^⟼^\longmapsto^\longmapsto^R^mathrel^^LONG RIGHTWARDS ARROW FROM BAR
+027FD^⟽^\Longmapsfrom^\Longmapsfrom^R^mathrel^stmaryrd^= \Longmappedfrom (kpfonts), LONG LEFTWARDS DOUBLE ARROW FROM BAR
+027FE^⟾^\Longmapsto^\Longmapsto^R^mathrel^stmaryrd^LONG RIGHTWARDS DOUBLE ARROW FROM BAR
+027FF^⟿^^\longrightsquigarrow^R^mathrel^^LONG RIGHTWARDS SQUIGGLE ARROW
+02900^⤀^\psur^\nvtwoheadrightarrow^R^mathrel^oz^= \psurj (oz), RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE, z notation partial surjection
+02901^⤁^^\nVtwoheadrightarrow^R^mathrel^^RIGHTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE, z notation finite surjection
+02902^⤂^^\nvLeftarrow^R^mathrel^^LEFTWARDS DOUBLE ARROW WITH VERTICAL STROKE
+02903^⤃^^\nvRightarrow^R^mathrel^^RIGHTWARDS DOUBLE ARROW WITH VERTICAL STROKE
+02904^⤄^^\nvLeftrightarrow^R^mathrel^^LEFT RIGHT DOUBLE ARROW WITH VERTICAL STROKE
+02905^⤅^^\twoheadmapsto^R^mathrel^^RIGHTWARDS TWO-HEADED ARROW FROM BAR
+02906^⤆^\Mapsfrom^\Mapsfrom^R^mathrel^stmaryrd^= \Mappedfrom (kpfonts), LEFTWARDS DOUBLE ARROW FROM BAR
+02907^⤇^\Mapsto^\Mapsto^R^mathrel^stmaryrd^RIGHTWARDS DOUBLE ARROW FROM BAR
+02908^⤈^^\downarrowbarred^R^mathrel^^DOWNWARDS ARROW WITH HORIZONTAL STROKE
+02909^⤉^^\uparrowbarred^R^mathrel^^UPWARDS ARROW WITH HORIZONTAL STROKE
+0290A^⤊^^\Uuparrow^R^mathrel^^UPWARDS TRIPLE ARROW
+0290B^⤋^^\Ddownarrow^R^mathrel^^DOWNWARDS TRIPLE ARROW
+0290C^⤌^^\leftbkarrow^R^mathrel^^LEFTWARDS DOUBLE DASH ARROW
+0290D^⤍^^\rightbkarrow^R^mathrel^^RIGHTWARDS DOUBLE DASH ARROW
+0290E^⤎^^\leftdbkarrow^R^mathrel^^LEFTWARDS TRIPLE DASH ARROW
+0290F^⤏^^\dbkarow^R^mathrel^^RIGHTWARDS TRIPLE DASH ARROW
+02910^⤐^^\drbkarow^R^mathrel^^RIGHTWARDS TWO-HEADED TRIPLE DASH ARROW
+02911^⤑^^\rightdotarrow^R^mathrel^^RIGHTWARDS ARROW WITH DOTTED STEM
+02912^⤒^\UpArrowBar^\baruparrow^R^mathrel^wrisym^UPWARDS ARROW TO BAR
+02913^⤓^\DownArrowBar^\downarrowbar^R^mathrel^wrisym^DOWNWARDS ARROW TO BAR
+02914^⤔^\pinj^\nvrightarrowtail^R^mathrel^oz^RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE, z notation partial injection
+02915^⤕^\finj^\nVrightarrowtail^R^mathrel^oz^RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE, z notation finite injection
+02916^⤖^\bij^\twoheadrightarrowtail^R^mathrel^oz^RIGHTWARDS TWO-HEADED ARROW WITH TAIL, z notation bijection
+02917^⤗^^\nvtwoheadrightarrowtail^R^mathrel^^RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE, z notation surjective injection
+02918^⤘^^\nVtwoheadrightarrowtail^R^mathrel^^RIGHTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE, z notation finite surjective injection
+02919^⤙^^\lefttail^R^mathrel^^LEFTWARDS ARROW-TAIL
+0291A^⤚^^\righttail^R^mathrel^^RIGHTWARDS ARROW-TAIL
+0291B^⤛^^\leftdbltail^R^mathrel^^LEFTWARDS DOUBLE ARROW-TAIL
+0291C^⤜^^\rightdbltail^R^mathrel^^RIGHTWARDS DOUBLE ARROW-TAIL
+0291D^⤝^^\diamondleftarrow^R^mathrel^^LEFTWARDS ARROW TO BLACK DIAMOND
+0291E^⤞^^\rightarrowdiamond^R^mathrel^^RIGHTWARDS ARROW TO BLACK DIAMOND
+0291F^⤟^^\diamondleftarrowbar^R^mathrel^^LEFTWARDS ARROW FROM BAR TO BLACK DIAMOND
+02920^⤠^^\barrightarrowdiamond^R^mathrel^^RIGHTWARDS ARROW FROM BAR TO BLACK DIAMOND
+02921^⤡^^\nwsearrow^R^mathrel^^NORTH WEST AND SOUTH EAST ARROW
+02922^⤢^^\neswarrow^R^mathrel^^NORTH EAST AND SOUTH WEST ARROW
+02923^⤣^^\hknwarrow^R^mathrel^^NORTH WEST ARROW WITH HOOK
+02924^⤤^^\hknearrow^R^mathrel^^NORTH EAST ARROW WITH HOOK
+02925^⤥^^\hksearow^R^mathrel^^SOUTH EAST ARROW WITH HOOK
+02926^⤦^^\hkswarow^R^mathrel^^SOUTH WEST ARROW WITH HOOK
+02927^⤧^^\tona^R^mathrel^^NORTH WEST ARROW AND NORTH EAST ARROW
+02928^⤨^^\toea^R^mathrel^^NORTH EAST ARROW AND SOUTH EAST ARROW
+02929^⤩^^\tosa^R^mathrel^^SOUTH EAST ARROW AND SOUTH WEST ARROW
+0292A^⤪^^\towa^R^mathrel^^SOUTH WEST ARROW AND NORTH WEST ARROW
+0292B^⤫^^\rdiagovfdiag^R^mathord^^RISING DIAGONAL CROSSING FALLING DIAGONAL
+0292C^⤬^^\fdiagovrdiag^R^mathord^^FALLING DIAGONAL CROSSING RISING DIAGONAL
+0292D^⤭^^\seovnearrow^R^mathord^^SOUTH EAST ARROW CROSSING NORTH EAST ARROW
+0292E^⤮^^\neovsearrow^R^mathord^^NORTH EAST ARROW CROSSING SOUTH EAST ARROW
+0292F^⤯^^\fdiagovnearrow^R^mathord^^FALLING DIAGONAL CROSSING NORTH EAST ARROW
+02930^⤰^^\rdiagovsearrow^R^mathord^^RISING DIAGONAL CROSSING SOUTH EAST ARROW
+02931^⤱^^\neovnwarrow^R^mathord^^NORTH EAST ARROW CROSSING NORTH WEST ARROW
+02932^⤲^^\nwovnearrow^R^mathord^^NORTH WEST ARROW CROSSING NORTH EAST ARROW
+02933^⤳^\leadsto^\rightcurvedarrow^R^mathrel^txfonts^WAVE ARROW POINTING DIRECTLY RIGHT
+02934^⤴^^\uprightcurvearrow^R^mathord^^ARROW POINTING RIGHTWARDS THEN CURVING UPWARDS
+02935^⤵^^\downrightcurvedarrow^R^mathord^^ARROW POINTING RIGHTWARDS THEN CURVING DOWNWARDS
+02936^⤶^^\leftdowncurvedarrow^R^mathrel^^ARROW POINTING DOWNWARDS THEN CURVING LEFTWARDS
+02937^⤷^^\rightdowncurvedarrow^R^mathrel^^ARROW POINTING DOWNWARDS THEN CURVING RIGHTWARDS
+02938^⤸^^\cwrightarcarrow^R^mathrel^^RIGHT-SIDE ARC CLOCKWISE ARROW
+02939^⤹^^\acwleftarcarrow^R^mathrel^^LEFT-SIDE ARC ANTICLOCKWISE ARROW
+0293A^⤺^^\acwoverarcarrow^R^mathrel^^TOP ARC ANTICLOCKWISE ARROW
+0293B^⤻^^\acwunderarcarrow^R^mathrel^^BOTTOM ARC ANTICLOCKWISE ARROW
+0293C^⤼^^\curvearrowrightminus^R^mathrel^^TOP ARC CLOCKWISE ARROW WITH MINUS
+0293D^⤽^^\curvearrowleftplus^R^mathrel^^TOP ARC ANTICLOCKWISE ARROW WITH PLUS
+0293E^⤾^^\cwundercurvearrow^R^mathrel^^LOWER RIGHT SEMICIRCULAR CLOCKWISE ARROW
+0293F^⤿^^\ccwundercurvearrow^R^mathrel^^LOWER LEFT SEMICIRCULAR ANTICLOCKWISE ARROW
+02940^⥀^^\acwcirclearrow^R^mathrel^^ANTICLOCKWISE CLOSED CIRCLE ARROW
+02941^⥁^^\cwcirclearrow^R^mathrel^^CLOCKWISE CLOSED CIRCLE ARROW
+02942^⥂^^\rightarrowshortleftarrow^R^mathrel^^RIGHTWARDS ARROW ABOVE SHORT LEFTWARDS ARROW
+02943^⥃^^\leftarrowshortrightarrow^R^mathrel^^LEFTWARDS ARROW ABOVE SHORT RIGHTWARDS ARROW
+02944^⥄^^\shortrightarrowleftarrow^R^mathrel^^SHORT RIGHTWARDS ARROW ABOVE LEFTWARDS ARROW
+02945^⥅^^\rightarrowplus^R^mathrel^^RIGHTWARDS ARROW WITH PLUS BELOW
+02946^⥆^^\leftarrowplus^R^mathrel^^LEFTWARDS ARROW WITH PLUS BELOW
+02947^⥇^^\rightarrowx^R^mathrel^^RIGHTWARDS ARROW THROUGH X
+02948^⥈^^\leftrightarrowcircle^R^mathrel^^LEFT RIGHT ARROW THROUGH SMALL CIRCLE
+02949^⥉^^\twoheaduparrowcircle^R^mathrel^^UPWARDS TWO-HEADED ARROW FROM SMALL CIRCLE
+0294A^⥊^\leftrightharpoon^\leftrightharpoonupdown^R^mathrel^mathabx^LEFT BARB UP RIGHT BARB DOWN HARPOON
+0294B^⥋^\rightleftharpoon^\leftrightharpoondownup^R^mathrel^mathabx^LEFT BARB DOWN RIGHT BARB UP HARPOON
+0294C^⥌^^\updownharpoonrightleft^R^mathrel^^UP BARB RIGHT DOWN BARB LEFT HARPOON
+0294D^⥍^^\updownharpoonleftright^R^mathrel^^UP BARB LEFT DOWN BARB RIGHT HARPOON
+0294E^⥎^\leftrightharpoonup^\leftrightharpoonupup^R^mathrel^wrisym^LEFT BARB UP RIGHT BARB UP HARPOON
+0294F^⥏^\rightupdownharpoon^\updownharpoonrightright^R^mathrel^wrisym^UP BARB RIGHT DOWN BARB RIGHT HARPOON
+02950^⥐^\leftrightharpoondown^\leftrightharpoondowndown^R^mathrel^wrisym^LEFT BARB DOWN RIGHT BARB DOWN HARPOON
+02951^⥑^\leftupdownharpoon^\updownharpoonleftleft^R^mathrel^wrisym^UP BARB LEFT DOWN BARB LEFT HARPOON
+02952^⥒^\LeftVectorBar^\barleftharpoonup^R^mathrel^wrisym^LEFTWARDS HARPOON WITH BARB UP TO BAR
+02953^⥓^\RightVectorBar^\rightharpoonupbar^R^mathrel^wrisym^RIGHTWARDS HARPOON WITH BARB UP TO BAR
+02954^⥔^\RightUpVectorBar^\barupharpoonright^R^mathrel^wrisym^UPWARDS HARPOON WITH BARB RIGHT TO BAR
+02955^⥕^\RightDownVectorBar^\downharpoonrightbar^R^mathrel^wrisym^DOWNWARDS HARPOON WITH BARB RIGHT TO BAR
+02956^⥖^\DownLeftVectorBar^\barleftharpoondown^R^mathrel^wrisym^LEFTWARDS HARPOON WITH BARB DOWN TO BAR
+02957^⥗^\DownRightVectorBar^\rightharpoondownbar^R^mathrel^wrisym^RIGHTWARDS HARPOON WITH BARB DOWN TO BAR
+02958^⥘^\LeftUpVectorBar^\barupharpoonleft^R^mathrel^wrisym^UPWARDS HARPOON WITH BARB LEFT TO BAR
+02959^⥙^\LeftDownVectorBar^\downharpoonleftbar^R^mathrel^wrisym^DOWNWARDS HARPOON WITH BARB LEFT TO BAR
+0295A^⥚^\LeftTeeVector^\leftharpoonupbar^R^mathrel^wrisym^LEFTWARDS HARPOON WITH BARB UP FROM BAR
+0295B^⥛^\RightTeeVector^\barrightharpoonup^R^mathrel^wrisym^RIGHTWARDS HARPOON WITH BARB UP FROM BAR
+0295C^⥜^\RightUpTeeVector^\upharpoonrightbar^R^mathrel^wrisym^UPWARDS HARPOON WITH BARB RIGHT FROM BAR
+0295D^⥝^\RightDownTeeVector^\bardownharpoonright^R^mathrel^wrisym^DOWNWARDS HARPOON WITH BARB RIGHT FROM BAR
+0295E^⥞^\DownLeftTeeVector^\leftharpoondownbar^R^mathrel^wrisym^LEFTWARDS HARPOON WITH BARB DOWN FROM BAR
+0295F^⥟^\DownRightTeeVector^\barrightharpoondown^R^mathrel^wrisym^RIGHTWARDS HARPOON WITH BARB DOWN FROM BAR
+02960^⥠^\LeftUpTeeVector^\upharpoonleftbar^R^mathrel^wrisym^UPWARDS HARPOON WITH BARB LEFT FROM BAR
+02961^⥡^\LeftDownTeeVector^\bardownharpoonleft^R^mathrel^wrisym^DOWNWARDS HARPOON WITH BARB LEFT FROM BAR
+02962^⥢^\leftleftharpoons^\leftharpoonsupdown^R^mathrel^mathabx^LEFTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB DOWN
+02963^⥣^\upupharpoons^\upharpoonsleftright^R^mathrel^mathabx^UPWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
+02964^⥤^\rightrightharpoons^\rightharpoonsupdown^R^mathrel^mathabx^RIGHTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
+02965^⥥^\downdownharpoons^\downharpoonsleftright^R^mathrel^mathabx^DOWNWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
+02966^⥦^^\leftrightharpoonsup^R^mathrel^^LEFTWARDS HARPOON WITH BARB UP ABOVE RIGHTWARDS HARPOON WITH BARB UP
+02967^⥧^^\leftrightharpoonsdown^R^mathrel^^LEFTWARDS HARPOON WITH BARB DOWN ABOVE RIGHTWARDS HARPOON WITH BARB DOWN
+02968^⥨^^\rightleftharpoonsup^R^mathrel^^RIGHTWARDS HARPOON WITH BARB UP ABOVE LEFTWARDS HARPOON WITH BARB UP
+02969^⥩^^\rightleftharpoonsdown^R^mathrel^^RIGHTWARDS HARPOON WITH BARB DOWN ABOVE LEFTWARDS HARPOON WITH BARB DOWN
+0296A^⥪^\leftbarharpoon^\leftharpoonupdash^R^mathrel^mathabx^LEFTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
+0296B^⥫^\barleftharpoon^\dashleftharpoondown^R^mathrel^mathabx^LEFTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
+0296C^⥬^\rightbarharpoon^\rightharpoonupdash^R^mathrel^mathabx^RIGHTWARDS HARPOON WITH BARB UP ABOVE LONG DASH
+0296D^⥭^\barrightharpoon^\dashrightharpoondown^R^mathrel^mathabx^RIGHTWARDS HARPOON WITH BARB DOWN BELOW LONG DASH
+0296E^⥮^\updownharpoons^\updownharpoonsleftright^R^mathrel^mathabx^= \upequilibrium (wrisym), UPWARDS HARPOON WITH BARB LEFT BESIDE DOWNWARDS HARPOON WITH BARB RIGHT
+0296F^⥯^\downupharpoons^\downupharpoonsleftright^R^mathrel^mathabx^= \uprevequilibrium (wrisym), DOWNWARDS HARPOON WITH BARB LEFT BESIDE UPWARDS HARPOON WITH BARB RIGHT
+02970^⥰^^\rightimply^R^mathrel^^RIGHT DOUBLE ARROW WITH ROUNDED HEAD
+02971^⥱^^\equalrightarrow^R^mathrel^^EQUALS SIGN ABOVE RIGHTWARDS ARROW
+02972^⥲^^\similarrightarrow^R^mathrel^^TILDE OPERATOR ABOVE RIGHTWARDS ARROW
+02973^⥳^^\leftarrowsimilar^R^mathrel^^LEFTWARDS ARROW ABOVE TILDE OPERATOR
+02974^⥴^^\rightarrowsimilar^R^mathrel^^RIGHTWARDS ARROW ABOVE TILDE OPERATOR
+02975^⥵^^\rightarrowapprox^R^mathrel^^RIGHTWARDS ARROW ABOVE ALMOST EQUAL TO
+02976^⥶^^\ltlarr^R^mathrel^^LESS-THAN ABOVE LEFTWARDS ARROW
+02977^⥷^^\leftarrowless^R^mathrel^^LEFTWARDS ARROW THROUGH LESS-THAN
+02978^⥸^^\gtrarr^R^mathrel^^GREATER-THAN ABOVE RIGHTWARDS ARROW
+02979^⥹^^\subrarr^R^mathrel^^SUBSET ABOVE RIGHTWARDS ARROW
+0297A^⥺^^\leftarrowsubset^R^mathrel^^LEFTWARDS ARROW THROUGH SUBSET
+0297B^⥻^^\suplarr^R^mathrel^^SUPERSET ABOVE LEFTWARDS ARROW
+0297C^⥼^\strictfi^\leftfishtail^R^mathrel^txfonts^LEFT FISH TAIL
+0297D^⥽^\strictif^\rightfishtail^R^mathrel^txfonts^RIGHT FISH TAIL
+0297E^⥾^^\upfishtail^R^mathrel^^UP FISH TAIL
+0297F^⥿^^\downfishtail^R^mathrel^^DOWN FISH TAIL
+02980^⦀^\VERT^\Vvert^F^mathfence^fourier^TRIPLE VERTICAL BAR DELIMITER
+02981^⦁^\spot^\mdsmblkcircle^N^mathord^oz^= \dot (oz), Z NOTATION SPOT
+02982^⦂^^\typecolon^F^mathbin^^Z NOTATION TYPE COLON, (present in bbold font but no command)
+02983^⦃^^\lBrace^O^mathopen^^LEFT WHITE CURLY BRACKET
+02984^⦄^^\rBrace^C^mathclose^^RIGHT WHITE CURLY BRACKET
+02985^⦅^\Lparen^\lParen^O^mathopen^mathbbol^LEFT WHITE PARENTHESIS
+02986^⦆^\Rparen^\rParen^C^mathclose^mathbbol^RIGHT WHITE PARENTHESIS
+02987^⦇^\limg^\llparenthesis^O^mathopen^oz^= \llparenthesis (stmaryrd), Z NOTATION LEFT IMAGE BRACKET
+02988^⦈^\rimg^\rrparenthesis^C^mathclose^oz^= \rrparenthesis (stmaryrd), Z NOTATION RIGHT IMAGE BRACKET
+02989^⦉^\lblot^\llangle^O^mathopen^oz^Z NOTATION LEFT BINDING BRACKET
+0298A^⦊^\rblot^\rrangle^C^mathclose^oz^Z NOTATION RIGHT BINDING BRACKET
+0298B^⦋^^\lbrackubar^O^mathopen^^LEFT SQUARE BRACKET WITH UNDERBAR
+0298C^⦌^^\rbrackubar^C^mathclose^^RIGHT SQUARE BRACKET WITH UNDERBAR
+0298D^⦍^^\lbrackultick^O^mathopen^^LEFT SQUARE BRACKET WITH TICK IN TOP CORNER
+0298E^⦎^^\rbracklrtick^C^mathclose^^RIGHT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
+0298F^⦏^^\lbracklltick^O^mathopen^^LEFT SQUARE BRACKET WITH TICK IN BOTTOM CORNER
+02990^⦐^^\rbrackurtick^C^mathclose^^RIGHT SQUARE BRACKET WITH TICK IN TOP CORNER
+02991^⦑^^\langledot^O^mathopen^^LEFT ANGLE BRACKET WITH DOT
+02992^⦒^^\rangledot^C^mathclose^^RIGHT ANGLE BRACKET WITH DOT
+02993^⦓^^\lparenless^O^mathopen^^LEFT ARC LESS-THAN BRACKET
+02994^⦔^^\rparengtr^C^mathclose^^RIGHT ARC GREATER-THAN BRACKET
+02995^⦕^^\Lparengtr^O^mathopen^^DOUBLE LEFT ARC GREATER-THAN BRACKET
+02996^⦖^^\Rparenless^C^mathclose^^DOUBLE RIGHT ARC LESS-THAN BRACKET
+02997^⦗^^\lblkbrbrak^O^mathopen^^LEFT BLACK TORTOISE SHELL BRACKET
+02998^⦘^^\rblkbrbrak^C^mathclose^^RIGHT BLACK TORTOISE SHELL BRACKET
+02999^⦙^^\fourvdots^F^mathord^^DOTTED FENCE
+0299A^⦚^^\vzigzag^F^mathord^^VERTICAL ZIGZAG LINE
+0299B^⦛^^\measuredangleleft^N^mathord^^MEASURED ANGLE OPENING LEFT
+0299C^⦜^^\rightanglesqr^N^mathord^^RIGHT ANGLE VARIANT WITH SQUARE
+0299D^⦝^^\rightanglemdot^N^mathord^^MEASURED RIGHT ANGLE WITH DOT
+0299E^⦞^^\angles^N^mathord^^ANGLE WITH S INSIDE
+0299F^⦟^^\angdnr^N^mathord^^ACUTE ANGLE
+029A0^⦠^^\gtlpar^N^mathord^^SPHERICAL ANGLE OPENING LEFT
+029A1^⦡^^\sphericalangleup^N^mathord^^SPHERICAL ANGLE OPENING UP
+029A2^⦢^^\turnangle^N^mathord^^TURNED ANGLE
+029A3^⦣^^\revangle^N^mathord^^REVERSED ANGLE
+029A4^⦤^^\angleubar^N^mathord^^ANGLE WITH UNDERBAR
+029A5^⦥^^\revangleubar^N^mathord^^REVERSED ANGLE WITH UNDERBAR
+029A6^⦦^^\wideangledown^N^mathord^^OBLIQUE ANGLE OPENING UP
+029A7^⦧^^\wideangleup^N^mathord^^OBLIQUE ANGLE OPENING DOWN
+029A8^⦨^^\measanglerutone^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND RIGHT
+029A9^⦩^^\measanglelutonw^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING UP AND LEFT
+029AA^⦪^^\measanglerdtose^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND RIGHT
+029AB^⦫^^\measangleldtosw^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING DOWN AND LEFT
+029AC^⦬^^\measangleurtone^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND UP
+029AD^⦭^^\measangleultonw^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND UP
+029AE^⦮^^\measangledrtose^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING RIGHT AND DOWN
+029AF^⦯^^\measangledltosw^N^mathord^^MEASURED ANGLE WITH OPEN ARM ENDING IN ARROW POINTING LEFT AND DOWN
+029B0^⦰^^\revemptyset^N^mathord^^REVERSED EMPTY SET
+029B1^⦱^^\emptysetobar^N^mathord^^EMPTY SET WITH OVERBAR
+029B2^⦲^^\emptysetocirc^N^mathord^^EMPTY SET WITH SMALL CIRCLE ABOVE
+029B3^⦳^^\emptysetoarr^N^mathord^^EMPTY SET WITH RIGHT ARROW ABOVE
+029B4^⦴^^\emptysetoarrl^N^mathord^^EMPTY SET WITH LEFT ARROW ABOVE
+029B5^⦵^^\circlehbar^N^mathbin^^CIRCLE WITH HORIZONTAL BAR
+029B6^⦶^^\circledvert^B^mathbin^^CIRCLED VERTICAL BAR
+029B7^⦷^^\circledparallel^B^mathbin^^CIRCLED PARALLEL
+029B8^⦸^\circledbslash^\obslash^B^mathbin^txfonts^CIRCLED REVERSE SOLIDUS
+029B9^⦹^^\operp^B^mathbin^^CIRCLED PERPENDICULAR
+029BA^⦺^^\obot^N^mathord^^CIRCLE DIVIDED BY HORIZONTAL BAR AND TOP HALF DIVIDED BY VERTICAL BAR
+029BB^⦻^^\olcross^N^mathord^^CIRCLE WITH SUPERIMPOSED X
+029BC^⦼^^\odotslashdot^N^mathord^^CIRCLED ANTICLOCKWISE-ROTATED DIVISION SIGN
+029BD^⦽^^\uparrowoncircle^N^mathord^^UP ARROW THROUGH CIRCLE
+029BE^⦾^^\circledwhitebullet^N^mathord^^CIRCLED WHITE BULLET
+029BF^⦿^^\circledbullet^N^mathord^^CIRCLED BULLET
+029C0^⧀^\circledless^\olessthan^B^mathbin^txfonts^CIRCLED LESS-THAN
+029C1^⧁^\circledgtr^\ogreaterthan^B^mathbin^txfonts^CIRCLED GREATER-THAN
+029C2^⧂^^\cirscir^N^mathord^^CIRCLE WITH SMALL CIRCLE TO THE RIGHT
+029C3^⧃^^\cirE^N^mathord^^CIRCLE WITH TWO HORIZONTAL STROKES TO THE RIGHT
+029C4^⧄^\boxslash^\boxdiag^B^mathbin^stmaryrd txfonts^SQUARED RISING DIAGONAL SLASH
+029C5^⧅^\boxbslash^\boxbslash^B^mathbin^stmaryrd txfonts^SQUARED FALLING DIAGONAL SLASH
+029C6^⧆^\boxast^\boxast^B^mathbin^stmaryrd txfonts^SQUARED ASTERISK
+029C7^⧇^\boxcircle^\boxcircle^B^mathbin^stmaryrd^SQUARED SMALL CIRCLE
+029C8^⧈^\boxbox^\boxbox^B^mathbin^stmaryrd^SQUARED SQUARE
+029C9^⧉^^\boxonbox^N^mathord^^TWO JOINED SQUARES
+029CA^⧊^^\triangleodot^N^mathord^^TRIANGLE WITH DOT ABOVE
+029CB^⧋^^\triangleubar^N^mathord^^TRIANGLE WITH UNDERBAR
+029CC^⧌^^\triangles^N^mathord^^S IN TRIANGLE
+029CD^⧍^^\triangleserifs^N^mathbin^^TRIANGLE WITH SERIFS AT BOTTOM
+029CE^⧎^^\rtriltri^R^mathrel^^RIGHT TRIANGLE ABOVE LEFT TRIANGLE
+029CF^⧏^\LeftTriangleBar^\ltrivb^R^mathrel^wrisym^LEFT TRIANGLE BESIDE VERTICAL BAR
+029D0^⧐^\RightTriangleBar^\vbrtri^R^mathrel^wrisym^VERTICAL BAR BESIDE RIGHT TRIANGLE
+029D1^⧑^^\lfbowtie^R^mathrel^^left black bowtie
+029D2^⧒^^\rfbowtie^R^mathrel^^right black bowtie
+029D3^⧓^^\fbowtie^R^mathrel^^BLACK BOWTIE
+029D4^⧔^^\lftimes^R^mathrel^^left black times
+029D5^⧕^^\rftimes^R^mathrel^^right black times
+029D6^⧖^^\hourglass^B^mathbin^^WHITE HOURGLASS
+029D7^⧗^^\blackhourglass^B^mathbin^^BLACK HOURGLASS
+029D8^⧘^^\lvzigzag^O^mathopen^^LEFT WIGGLY FENCE
+029D9^⧙^^\rvzigzag^C^mathclose^^RIGHT WIGGLY FENCE
+029DA^⧚^^\Lvzigzag^O^mathopen^^LEFT DOUBLE WIGGLY FENCE
+029DB^⧛^^\Rvzigzag^C^mathclose^^RIGHT DOUBLE WIGGLY FENCE
+029DC^⧜^^\iinfin^N^mathord^^INCOMPLETE INFINITY
+029DD^⧝^^\tieinfty^N^mathord^^TIE OVER INFINITY
+029DE^⧞^^\nvinfty^N^mathord^^INFINITY NEGATED WITH VERTICAL BAR
+029DF^⧟^\multimapboth^\dualmap^R^mathrel^txfonts^DOUBLE-ENDED MULTIMAP
+029E0^⧠^^\laplac^N^mathord^^SQUARE WITH CONTOURED OUTLINE
+029E1^⧡^^\lrtriangleeq^R^mathrel^^INCREASES AS
+029E2^⧢^^\shuffle^B^mathbin^^SHUFFLE PRODUCT
+029E3^⧣^^\eparsl^R^mathrel^^EQUALS SIGN AND SLANTED PARALLEL
+029E4^⧤^^\smeparsl^R^mathrel^^EQUALS SIGN AND SLANTED PARALLEL WITH TILDE ABOVE
+029E5^⧥^^\eqvparsl^R^mathrel^^IDENTICAL TO AND SLANTED PARALLEL
+029E6^⧦^^\gleichstark^R^mathrel^^GLEICH STARK
+029E7^⧧^^\thermod^N^mathord^^THERMODYNAMIC
+029E8^⧨^^\downtriangleleftblack^N^mathord^^DOWN-POINTING TRIANGLE WITH LEFT HALF BLACK
+029E9^⧩^^\downtrianglerightblack^N^mathord^^DOWN-POINTING TRIANGLE WITH RIGHT HALF BLACK
+029EA^⧪^^\blackdiamonddownarrow^N^mathord^^BLACK DIAMOND WITH DOWN ARROW
+029EB^⧫^\blacklozenge^\mdlgblklozenge^B^mathbin^amssymb^BLACK LOZENGE
+029EC^⧬^^\circledownarrow^N^mathord^^WHITE CIRCLE WITH DOWN ARROW
+029ED^⧭^^\blackcircledownarrow^N^mathord^^BLACK CIRCLE WITH DOWN ARROW
+029EE^⧮^^\errbarsquare^N^mathord^^ERROR-BARRED WHITE SQUARE
+029EF^⧯^^\errbarblacksquare^N^mathord^^ERROR-BARRED BLACK SQUARE
+029F0^⧰^^\errbardiamond^N^mathord^^ERROR-BARRED WHITE DIAMOND
+029F1^⧱^^\errbarblackdiamond^N^mathord^^ERROR-BARRED BLACK DIAMOND
+029F2^⧲^^\errbarcircle^N^mathord^^ERROR-BARRED WHITE CIRCLE
+029F3^⧳^^\errbarblackcircle^N^mathord^^ERROR-BARRED BLACK CIRCLE
+029F4^⧴^^\ruledelayed^R^mathrel^^RULE-DELAYED
+029F5^⧵^\setminus^\setminus^B^mathbin^^REVERSE SOLIDUS OPERATOR
+029F6^⧶^^\dsol^B^mathbin^^SOLIDUS WITH OVERBAR
+029F7^⧷^^\rsolbar^B^mathbin^^REVERSE SOLIDUS WITH HORIZONTAL STROKE
+029F8^⧸^^\xsol^L^mathop^^BIG SOLIDUS
+029F9^⧹^\zhide^\xbsol^L^mathop^oz^= \hide (oz), BIG REVERSE SOLIDUS, z notation schema hiding
+029FA^⧺^^\doubleplus^B^mathbin^^DOUBLE PLUS
+029FB^⧻^^\tripleplus^B^mathbin^^TRIPLE PLUS
+029FC^⧼^^\lcurvyangle^O^mathopen^^left pointing curved angle bracket
+029FD^⧽^^\rcurvyangle^C^mathclose^^right pointing curved angle bracket
+029FE^⧾^^\tplus^B^mathbin^^TINY
+029FF^⧿^^\tminus^B^mathbin^^MINY
+02A00^⨀^\bigodot^\bigodot^L^mathop^^N-ARY CIRCLED DOT OPERATOR
+02A01^⨁^\bigoplus^\bigoplus^L^mathop^^N-ARY CIRCLED PLUS OPERATOR
+02A02^⨂^\bigotimes^\bigotimes^L^mathop^^N-ARY CIRCLED TIMES OPERATOR
+02A03^⨃^^\bigcupdot^L^mathop^^N-ARY UNION OPERATOR WITH DOT
+02A04^⨄^\biguplus^\biguplus^L^mathop^^N-ARY UNION OPERATOR WITH PLUS
+02A05^⨅^\bigsqcap^\bigsqcap^L^mathop^txfonts^N-ARY SQUARE INTERSECTION OPERATOR
+02A06^⨆^\bigsqcup^\bigsqcup^L^mathop^^N-ARY SQUARE UNION OPERATOR
+02A07^⨇^^\conjquant^L^mathop^^TWO LOGICAL AND OPERATOR
+02A08^⨈^^\disjquant^L^mathop^^TWO LOGICAL OR OPERATOR
+02A09^⨉^\varprod^\bigtimes^L^mathop^txfonts^N-ARY TIMES OPERATOR
+02A0A^⨊^^\modtwosum^L^mathord^^MODULO TWO SUM
+02A0B^⨋^^\sumint^L^mathop^^SUMMATION WITH INTEGRAL
+02A0C^⨌^\iiiint^\iiiint^L^mathop^amsmath esint^QUADRUPLE INTEGRAL OPERATOR
+02A0D^⨍^^\intbar^L^mathop^^FINITE PART INTEGRAL
+02A0E^⨎^^\intBar^L^mathop^^INTEGRAL WITH DOUBLE STROKE
+02A0F^⨏^\fint^\fint^L^mathop^esint wrisym^INTEGRAL AVERAGE WITH SLASH
+02A10^⨐^^\cirfnint^L^mathop^^CIRCULATION FUNCTION
+02A11^⨑^^\awint^L^mathop^^ANTICLOCKWISE INTEGRATION
+02A12^⨒^^\rppolint^L^mathop^^LINE INTEGRATION WITH RECTANGULAR PATH AROUND POLE
+02A13^⨓^^\scpolint^L^mathop^^LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
+02A14^⨔^^\npolint^L^mathop^^LINE INTEGRATION NOT INCLUDING THE POLE
+02A15^⨕^^\pointint^L^mathop^^INTEGRAL AROUND A POINT OPERATOR
+02A16^⨖^\sqint^\sqint^L^mathop^esint^= \sqrint (wrisym), QUATERNION INTEGRAL OPERATOR
+02A17^⨗^^\intlarhk^L^mathop^^INTEGRAL WITH LEFTWARDS ARROW WITH HOOK
+02A18^⨘^^\intx^L^mathop^^INTEGRAL WITH TIMES SIGN
+02A19^⨙^^\intcap^L^mathop^^INTEGRAL WITH INTERSECTION
+02A1A^⨚^^\intcup^L^mathop^^INTEGRAL WITH UNION
+02A1B^⨛^^\upint^L^mathop^^INTEGRAL WITH OVERBAR
+02A1C^⨜^^\lowint^L^mathop^^INTEGRAL WITH UNDERBAR
+02A1D^⨝^\Join^\Join^L^mathop^amssymb^JOIN
+02A1E^⨞^^\bigtriangleleft^L^mathop^^LARGE LEFT TRIANGLE OPERATOR
+02A1F^⨟^\zcmp^\zcmp^L^mathop^oz^= \semi (oz), = \fatsemi (stmaryrd), Z NOTATION SCHEMA COMPOSITION
+02A20^⨠^\zpipe^\zpipe^L^mathop^oz^Z NOTATION SCHEMA PIPING
+02A21^⨡^\zproject^\zproject^L^mathop^oz^= \project (oz), Z NOTATION SCHEMA PROJECTION
+02A22^⨢^^\ringplus^B^mathbin^^PLUS SIGN WITH SMALL CIRCLE ABOVE
+02A23^⨣^^\plushat^B^mathbin^^PLUS SIGN WITH CIRCUMFLEX ACCENT ABOVE
+02A24^⨤^^\simplus^B^mathbin^^PLUS SIGN WITH TILDE ABOVE
+02A25^⨥^^\plusdot^B^mathbin^^PLUS SIGN WITH DOT BELOW
+02A26^⨦^^\plussim^B^mathbin^^PLUS SIGN WITH TILDE BELOW
+02A27^⨧^^\plussubtwo^B^mathbin^^PLUS SIGN WITH SUBSCRIPT TWO
+02A28^⨨^^\plustrif^B^mathbin^^PLUS SIGN WITH BLACK TRIANGLE
+02A29^⨩^^\commaminus^B^mathbin^^MINUS SIGN WITH COMMA ABOVE
+02A2A^⨪^^\minusdot^B^mathbin^^MINUS SIGN WITH DOT BELOW
+02A2B^⨫^^\minusfdots^B^mathbin^^MINUS SIGN WITH FALLING DOTS
+02A2C^⨬^^\minusrdots^B^mathbin^^MINUS SIGN WITH RISING DOTS
+02A2D^⨭^^\opluslhrim^B^mathbin^^PLUS SIGN IN LEFT HALF CIRCLE
+02A2E^⨮^^\oplusrhrim^B^mathbin^^PLUS SIGN IN RIGHT HALF CIRCLE
+02A2F^⨯^^\vectimes^B^mathbin^^# \times, VECTOR OR CROSS PRODUCT
+02A30^⨰^^\dottimes^B^mathbin^^MULTIPLICATION SIGN WITH DOT ABOVE
+02A31^⨱^^\timesbar^B^mathbin^^MULTIPLICATION SIGN WITH UNDERBAR
+02A32^⨲^^\btimes^B^mathbin^^SEMIDIRECT PRODUCT WITH BOTTOM CLOSED
+02A33^⨳^^\smashtimes^B^mathbin^^SMASH PRODUCT
+02A34^⨴^^\otimeslhrim^B^mathbin^^MULTIPLICATION SIGN IN LEFT HALF CIRCLE
+02A35^⨵^^\otimesrhrim^B^mathbin^^MULTIPLICATION SIGN IN RIGHT HALF CIRCLE
+02A36^⨶^^\otimeshat^B^mathbin^^CIRCLED MULTIPLICATION SIGN WITH CIRCUMFLEX ACCENT
+02A37^⨷^^\Otimes^B^mathbin^^MULTIPLICATION SIGN IN DOUBLE CIRCLE
+02A38^⨸^^\odiv^B^mathbin^^CIRCLED DIVISION SIGN
+02A39^⨹^^\triangleplus^B^mathbin^^PLUS SIGN IN TRIANGLE
+02A3A^⨺^^\triangleminus^B^mathbin^^MINUS SIGN IN TRIANGLE
+02A3B^⨻^^\triangletimes^B^mathbin^^MULTIPLICATION SIGN IN TRIANGLE
+02A3C^⨼^^\intprod^B^mathbin^^INTERIOR PRODUCT
+02A3D^⨽^^\intprodr^B^mathbin^^RIGHTHAND INTERIOR PRODUCT
+02A3E^⨾^\fcmp^\fcmp^B^mathbin^oz^= \comp (oz), Z NOTATION RELATIONAL COMPOSITION
+02A3F^⨿^\amalg^\amalg^B^mathbin^^AMALGAMATION OR COPRODUCT
+02A40^⩀^^\capdot^B^mathbin^^INTERSECTION WITH DOT
+02A41^⩁^^\uminus^B^mathbin^^UNION WITH MINUS SIGN, z notation bag subtraction
+02A42^⩂^^\barcup^B^mathbin^^UNION WITH OVERBAR
+02A43^⩃^^\barcap^B^mathbin^^INTERSECTION WITH OVERBAR
+02A44^⩄^^\capwedge^B^mathbin^^INTERSECTION WITH LOGICAL AND
+02A45^⩅^^\cupvee^B^mathbin^^UNION WITH LOGICAL OR
+02A46^⩆^^\cupovercap^B^mathbin^^UNION ABOVE INTERSECTION
+02A47^⩇^^\capovercup^B^mathbin^^INTERSECTION ABOVE UNION
+02A48^⩈^^\cupbarcap^B^mathbin^^UNION ABOVE BAR ABOVE INTERSECTION
+02A49^⩉^^\capbarcup^B^mathbin^^INTERSECTION ABOVE BAR ABOVE UNION
+02A4A^⩊^^\twocups^B^mathbin^^UNION BESIDE AND JOINED WITH UNION
+02A4B^⩋^^\twocaps^B^mathbin^^INTERSECTION BESIDE AND JOINED WITH INTERSECTION
+02A4C^⩌^^\closedvarcup^B^mathbin^^CLOSED UNION WITH SERIFS
+02A4D^⩍^^\closedvarcap^B^mathbin^^CLOSED INTERSECTION WITH SERIFS
+02A4E^⩎^^\Sqcap^B^mathbin^^DOUBLE SQUARE INTERSECTION
+02A4F^⩏^^\Sqcup^B^mathbin^^DOUBLE SQUARE UNION
+02A50^⩐^^\closedvarcupsmashprod^B^mathbin^^CLOSED UNION WITH SERIFS AND SMASH PRODUCT
+02A51^⩑^^\wedgeodot^B^mathbin^^LOGICAL AND WITH DOT ABOVE
+02A52^⩒^^\veeodot^B^mathbin^^LOGICAL OR WITH DOT ABOVE
+02A53^⩓^^\Wedge^B^mathbin^^DOUBLE LOGICAL AND
+02A54^⩔^^\Vee^B^mathbin^^DOUBLE LOGICAL OR
+02A55^⩕^^\wedgeonwedge^B^mathbin^^TWO INTERSECTING LOGICAL AND
+02A56^⩖^^\veeonvee^B^mathbin^^TWO INTERSECTING LOGICAL OR
+02A57^⩗^^\bigslopedvee^B^mathbin^^SLOPING LARGE OR
+02A58^⩘^^\bigslopedwedge^B^mathbin^^SLOPING LARGE AND
+02A59^⩙^^\veeonwedge^R^mathrel^^LOGICAL OR OVERLAPPING LOGICAL AND
+02A5A^⩚^^\wedgemidvert^B^mathbin^^LOGICAL AND WITH MIDDLE STEM
+02A5B^⩛^^\veemidvert^B^mathbin^^LOGICAL OR WITH MIDDLE STEM
+02A5C^⩜^^\midbarwedge^B^mathbin^^ogical and with horizontal dash
+02A5D^⩝^^\midbarvee^B^mathbin^^LOGICAL OR WITH HORIZONTAL DASH
+02A5E^⩞^\doublebarwedge^\doublebarwedge^B^mathbin^amssymb^LOGICAL AND WITH DOUBLE OVERBAR
+02A5F^⩟^^\wedgebar^B^mathbin^^LOGICAL AND WITH UNDERBAR
+02A60^⩠^^\wedgedoublebar^B^mathbin^^LOGICAL AND WITH DOUBLE UNDERBAR
+02A61^⩡^^\varveebar^B^mathbin^^SMALL VEE WITH UNDERBAR
+02A62^⩢^^\doublebarvee^B^mathbin^^LOGICAL OR WITH DOUBLE OVERBAR
+02A63^⩣^^\veedoublebar^B^mathbin^^LOGICAL OR WITH DOUBLE UNDERBAR
+02A64^⩤^\dsub^\dsub^B^mathbin^oz^= \ndres (oz), Z NOTATION DOMAIN ANTIRESTRICTION
+02A65^⩥^\rsub^\rsub^B^mathbin^oz^= \nrres (oz), Z NOTATION RANGE ANTIRESTRICTION
+02A66^⩦^^\eqdot^R^mathrel^^EQUALS SIGN WITH DOT BELOW
+02A67^⩧^^\dotequiv^R^mathrel^^IDENTICAL WITH DOT ABOVE
+02A68^⩨^^\equivVert^R^mathrel^^TRIPLE HORIZONTAL BAR WITH DOUBLE VERTICAL STROKE
+02A69^⩩^^\equivVvert^R^mathrel^^TRIPLE HORIZONTAL BAR WITH TRIPLE VERTICAL STROKE
+02A6A^⩪^^\dotsim^R^mathrel^^TILDE OPERATOR WITH DOT ABOVE
+02A6B^⩫^^\simrdots^R^mathrel^^TILDE OPERATOR WITH RISING DOTS
+02A6C^⩬^^\simminussim^R^mathrel^^SIMILAR MINUS SIMILAR
+02A6D^⩭^^\congdot^R^mathrel^^CONGRUENT WITH DOT ABOVE
+02A6E^⩮^^\asteq^R^mathrel^^EQUALS WITH ASTERISK
+02A6F^⩯^^\hatapprox^R^mathrel^^ALMOST EQUAL TO WITH CIRCUMFLEX ACCENT
+02A70^⩰^^\approxeqq^R^mathrel^^APPROXIMATELY EQUAL OR EQUAL TO
+02A71^⩱^^\eqqplus^B^mathbin^^EQUALS SIGN ABOVE PLUS SIGN
+02A72^⩲^^\pluseqq^B^mathbin^^PLUS SIGN ABOVE EQUALS SIGN
+02A73^⩳^^\eqqsim^R^mathrel^^EQUALS SIGN ABOVE TILDE OPERATOR
+02A74^⩴^\Coloneqq^\Coloneq^R^mathrel^txfonts^# ::=, x \Coloneq (txfonts), DOUBLE COLON EQUAL
+02A75^⩵^\Equal^\eqeq^R^mathrel^wrisym^# ==, TWO CONSECUTIVE EQUALS SIGNS
+02A76^⩶^\Same^\eqeqeq^R^mathrel^wrisym^# ===, THREE CONSECUTIVE EQUALS SIGNS
+02A77^⩷^^\ddotseq^R^mathrel^^EQUALS SIGN WITH TWO DOTS ABOVE AND TWO DOTS BELOW
+02A78^⩸^^\equivDD^R^mathrel^^EQUIVALENT WITH FOUR DOTS ABOVE
+02A79^⩹^^\ltcir^R^mathrel^^LESS-THAN WITH CIRCLE INSIDE
+02A7A^⩺^^\gtcir^R^mathrel^^GREATER-THAN WITH CIRCLE INSIDE
+02A7B^⩻^^\ltquest^R^mathrel^^LESS-THAN WITH QUESTION MARK ABOVE
+02A7C^⩼^^\gtquest^R^mathrel^^GREATER-THAN WITH QUESTION MARK ABOVE
+02A7D^⩽^\leqslant^\leqslant^R^mathrel^amssymb fourier^LESS-THAN OR SLANTED EQUAL TO
+02A7E^⩾^\geqslant^\geqslant^R^mathrel^amssymb fourier^GREATER-THAN OR SLANTED EQUAL TO
+02A7F^⩿^^\lesdot^R^mathrel^^LESS-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
+02A80^⪀^^\gesdot^R^mathrel^^GREATER-THAN OR SLANTED EQUAL TO WITH DOT INSIDE
+02A81^⪁^^\lesdoto^R^mathrel^^LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
+02A82^⪂^^\gesdoto^R^mathrel^^GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE
+02A83^⪃^^\lesdotor^R^mathrel^^LESS-THAN OR SLANTED EQUAL TO WITH DOT ABOVE RIGHT
+02A84^⪄^^\gesdotol^R^mathrel^^GREATER-THAN OR SLANTED EQUAL TO WITH DOT ABOVE LEFT
+02A85^⪅^\lessapprox^\lessapprox^R^mathrel^amssymb^LESS-THAN OR APPROXIMATE
+02A86^⪆^\gtrapprox^\gtrapprox^R^mathrel^amssymb^GREATER-THAN OR APPROXIMATE
+02A87^⪇^\lneq^\lneq^R^mathrel^amssymb^LESS-THAN AND SINGLE-LINE NOT EQUAL TO
+02A88^⪈^\gneq^\gneq^R^mathrel^amssymb^GREATER-THAN AND SINGLE-LINE NOT EQUAL TO
+02A89^⪉^\lnapprox^\lnapprox^R^mathrel^amssymb^LESS-THAN AND NOT APPROXIMATE
+02A8A^⪊^\gnapprox^\gnapprox^R^mathrel^amssymb^GREATER-THAN AND NOT APPROXIMATE
+02A8B^⪋^\lesseqqgtr^\lesseqqgtr^R^mathrel^amssymb^LESS-THAN ABOVE DOUBLE-LINE EQUAL ABOVE GREATER-THAN
+02A8C^⪌^\gtreqqless^\gtreqqless^R^mathrel^amssymb^GREATER-THAN ABOVE DOUBLE-LINE EQUAL ABOVE LESS-THAN
+02A8D^⪍^^\lsime^R^mathrel^^LESS-THAN ABOVE SIMILAR OR EQUAL
+02A8E^⪎^^\gsime^R^mathrel^^GREATER-THAN ABOVE SIMILAR OR EQUAL
+02A8F^⪏^^\lsimg^R^mathrel^^LESS-THAN ABOVE SIMILAR ABOVE GREATER-THAN
+02A90^⪐^^\gsiml^R^mathrel^^GREATER-THAN ABOVE SIMILAR ABOVE LESS-THAN
+02A91^⪑^^\lgE^R^mathrel^^LESS-THAN ABOVE GREATER-THAN ABOVE DOUBLE-LINE EQUAL
+02A92^⪒^^\glE^R^mathrel^^GREATER-THAN ABOVE LESS-THAN ABOVE DOUBLE-LINE EQUAL
+02A93^⪓^^\lesges^R^mathrel^^LESS-THAN ABOVE SLANTED EQUAL ABOVE GREATER-THAN ABOVE SLANTED EQUAL
+02A94^⪔^^\gesles^R^mathrel^^GREATER-THAN ABOVE SLANTED EQUAL ABOVE LESS-THAN ABOVE SLANTED EQUAL
+02A95^⪕^\eqslantless^\eqslantless^R^mathrel^amssymb^SLANTED EQUAL TO OR LESS-THAN
+02A96^⪖^\eqslantgtr^\eqslantgtr^R^mathrel^amssymb^SLANTED EQUAL TO OR GREATER-THAN
+02A97^⪗^^\elsdot^R^mathrel^^SLANTED EQUAL TO OR LESS-THAN WITH DOT INSIDE
+02A98^⪘^^\egsdot^R^mathrel^^SLANTED EQUAL TO OR GREATER-THAN WITH DOT INSIDE
+02A99^⪙^^\eqqless^R^mathrel^^DOUBLE-LINE EQUAL TO OR LESS-THAN
+02A9A^⪚^^\eqqgtr^R^mathrel^^DOUBLE-LINE EQUAL TO OR GREATER-THAN
+02A9B^⪛^^\eqqslantless^R^mathrel^^DOUBLE-LINE SLANTED EQUAL TO OR LESS-THAN
+02A9C^⪜^^\eqqslantgtr^R^mathrel^^DOUBLE-LINE SLANTED EQUAL TO OR GREATER-THAN
+02A9D^⪝^^\simless^R^mathrel^^SIMILAR OR LESS-THAN
+02A9E^⪞^^\simgtr^R^mathrel^^SIMILAR OR GREATER-THAN
+02A9F^⪟^^\simlE^R^mathrel^^SIMILAR ABOVE LESS-THAN ABOVE EQUALS SIGN
+02AA0^⪠^^\simgE^R^mathrel^^SIMILAR ABOVE GREATER-THAN ABOVE EQUALS SIGN
+02AA1^⪡^\NestedLessLess^\Lt^R^mathrel^wrisym^= \lll (mathabx -amssymb), DOUBLE NESTED LESS-THAN
+02AA2^⪢^\NestedGreaterGreater^\Gt^R^mathrel^wrisym^= \ggg (mathabx -amssymb), DOUBLE NESTED GREATER-THAN
+02AA3^⪣^^\partialmeetcontraction^R^mathrel^^double less-than with underbar
+02AA4^⪤^^\glj^R^mathrel^^GREATER-THAN OVERLAPPING LESS-THAN
+02AA5^⪥^^\gla^R^mathrel^^GREATER-THAN BESIDE LESS-THAN
+02AA6^⪦^\leftslice^\ltcc^R^mathrel^stmaryrd^LESS-THAN CLOSED BY CURVE
+02AA7^⪧^\rightslice^\gtcc^R^mathrel^stmaryrd^GREATER-THAN CLOSED BY CURVE
+02AA8^⪨^^\lescc^R^mathrel^^LESS-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
+02AA9^⪩^^\gescc^R^mathrel^^GREATER-THAN CLOSED BY CURVE ABOVE SLANTED EQUAL
+02AAA^⪪^^\smt^R^mathrel^^SMALLER THAN
+02AAB^⪫^^\lat^R^mathrel^^LARGER THAN
+02AAC^⪬^^\smte^R^mathrel^^SMALLER THAN OR EQUAL TO
+02AAD^⪭^^\late^R^mathrel^^LARGER THAN OR EQUAL TO
+02AAE^⪮^^\bumpeqq^R^mathrel^^EQUALS SIGN WITH BUMPY ABOVE
+02AAF^⪯^\preceq^\preceq^R^mathrel^^PRECEDES ABOVE SINGLE-LINE EQUALS SIGN
+02AB0^⪰^\succeq^\succeq^R^mathrel^^SUCCEEDS ABOVE SINGLE-LINE EQUALS SIGN
+02AB1^⪱^^\precneq^R^mathrel^^PRECEDES ABOVE SINGLE-LINE NOT EQUAL TO
+02AB2^⪲^^\succneq^R^mathrel^^SUCCEEDS ABOVE SINGLE-LINE NOT EQUAL TO
+02AB3^⪳^\preceqq^\preceqq^R^mathrel^txfonts^PRECEDES ABOVE EQUALS SIGN
+02AB4^⪴^\succeqq^\succeqq^R^mathrel^txfonts^SUCCEEDS ABOVE EQUALS SIGN
+02AB5^⪵^^\precneqq^R^mathrel^amssymb^PRECEDES ABOVE NOT EQUAL TO
+02AB6^⪶^^\succneqq^R^mathrel^amssymb^SUCCEEDS ABOVE NOT EQUAL TO
+02AB7^⪷^\precapprox^\precapprox^R^mathrel^amssymb^PRECEDES ABOVE ALMOST EQUAL TO
+02AB8^⪸^\succapprox^\succapprox^R^mathrel^amssymb^SUCCEEDS ABOVE ALMOST EQUAL TO
+02AB9^⪹^\precnapprox^\precnapprox^R^mathrel^amssymb^PRECEDES ABOVE NOT ALMOST EQUAL TO
+02ABA^⪺^\succnapprox^\succnapprox^R^mathrel^amssymb^SUCCEEDS ABOVE NOT ALMOST EQUAL TO
+02ABB^⪻^\llcurly^\Prec^R^mathrel^mathabx^DOUBLE PRECEDES
+02ABC^⪼^\ggcurly^\Succ^R^mathrel^mathabx^DOUBLE SUCCEEDS
+02ABD^⪽^^\subsetdot^R^mathrel^^SUBSET WITH DOT
+02ABE^⪾^^\supsetdot^R^mathrel^^SUPERSET WITH DOT
+02ABF^⪿^^\subsetplus^R^mathrel^^SUBSET WITH PLUS SIGN BELOW
+02AC0^⫀^^\supsetplus^R^mathrel^^SUPERSET WITH PLUS SIGN BELOW
+02AC1^⫁^^\submult^R^mathrel^^SUBSET WITH MULTIPLICATION SIGN BELOW
+02AC2^⫂^^\supmult^R^mathrel^^SUPERSET WITH MULTIPLICATION SIGN BELOW
+02AC3^⫃^^\subedot^R^mathrel^^SUBSET OF OR EQUAL TO WITH DOT ABOVE
+02AC4^⫄^^\supedot^R^mathrel^^SUPERSET OF OR EQUAL TO WITH DOT ABOVE
+02AC5^⫅^\subseteqq^\subseteqq^R^mathrel^amssymb^SUBSET OF ABOVE EQUALS SIGN
+02AC6^⫆^\supseteqq^\supseteqq^R^mathrel^amssymb^SUPERSET OF ABOVE EQUALS SIGN
+02AC7^⫇^^\subsim^R^mathrel^^SUBSET OF ABOVE TILDE OPERATOR
+02AC8^⫈^^\supsim^R^mathrel^^SUPERSET OF ABOVE TILDE OPERATOR
+02AC9^⫉^^\subsetapprox^R^mathrel^^SUBSET OF ABOVE ALMOST EQUAL TO
+02ACA^⫊^^\supsetapprox^R^mathrel^^SUPERSET OF ABOVE ALMOST EQUAL TO
+02ACB^⫋^\subsetneqq^\subsetneqq^R^mathrel^amssymb^SUBSET OF ABOVE NOT EQUAL TO
+02ACC^⫌^\supsetneqq^\supsetneqq^R^mathrel^amssymb^SUPERSET OF ABOVE NOT EQUAL TO
+02ACD^⫍^^\lsqhook^R^mathrel^^SQUARE LEFT OPEN BOX OPERATOR
+02ACE^⫎^^\rsqhook^R^mathrel^^SQUARE RIGHT OPEN BOX OPERATOR
+02ACF^⫏^^\csub^R^mathrel^^CLOSED SUBSET
+02AD0^⫐^^\csup^R^mathrel^^CLOSED SUPERSET
+02AD1^⫑^^\csube^R^mathrel^^CLOSED SUBSET OR EQUAL TO
+02AD2^⫒^^\csupe^R^mathrel^^CLOSED SUPERSET OR EQUAL TO
+02AD3^⫓^^\subsup^R^mathrel^^SUBSET ABOVE SUPERSET
+02AD4^⫔^^\supsub^R^mathrel^^SUPERSET ABOVE SUBSET
+02AD5^⫕^^\subsub^R^mathrel^^SUBSET ABOVE SUBSET
+02AD6^⫖^^\supsup^R^mathrel^^SUPERSET ABOVE SUPERSET
+02AD7^⫗^^\suphsub^R^mathrel^^SUPERSET BESIDE SUBSET
+02AD8^⫘^^\supdsub^R^mathrel^^SUPERSET BESIDE AND JOINED BY DASH WITH SUBSET
+02AD9^⫙^^\forkv^R^mathrel^^ELEMENT OF OPENING DOWNWARDS
+02ADA^⫚^^\topfork^R^mathrel^^PITCHFORK WITH TEE TOP
+02ADB^⫛^^\mlcp^R^mathrel^^TRANSVERSAL INTERSECTION
+02ADC^⫝̸^^\forks^R^mathrel^^FORKING
+02ADD^⫝^^\forksnot^R^mathrel^^NONFORKING
+02ADE^⫞^^\shortlefttack^R^mathrel^^SHORT LEFT TACK
+02ADF^⫟^^\shortdowntack^R^mathrel^^SHORT DOWN TACK
+02AE0^⫠^^\shortuptack^R^mathrel^^SHORT UP TACK
+02AE1^⫡^^\perps^N^mathord^^PERPENDICULAR WITH S
+02AE2^⫢^^\vDdash^R^mathrel^^VERTICAL BAR TRIPLE RIGHT TURNSTILE
+02AE3^⫣^^\dashV^R^mathrel^^DOUBLE VERTICAL BAR LEFT TURNSTILE
+02AE4^⫤^^\Dashv^R^mathrel^^VERTICAL BAR DOUBLE LEFT TURNSTILE
+02AE5^⫥^^\DashV^R^mathrel^^DOUBLE VERTICAL BAR DOUBLE LEFT TURNSTILE
+02AE6^⫦^^\varVdash^R^mathrel^^LONG DASH FROM LEFT MEMBER OF DOUBLE VERTICAL
+02AE7^⫧^^\Barv^R^mathrel^^SHORT DOWN TACK WITH OVERBAR
+02AE8^⫨^^\vBar^R^mathrel^^SHORT UP TACK WITH UNDERBAR
+02AE9^⫩^^\vBarv^R^mathrel^^SHORT UP TACK ABOVE SHORT DOWN TACK
+02AEA^⫪^\Top^\barV^R^mathrel^txfonts^DOUBLE DOWN TACK
+02AEB^⫫^\Bot^\Vbar^R^mathrel^txfonts^= \Perp (txfonts), DOUBLE UP TACK
+02AEC^⫬^^\Not^R^mathrel^^DOUBLE STROKE NOT SIGN
+02AED^⫭^^\bNot^R^mathrel^^REVERSED DOUBLE STROKE NOT SIGN
+02AEE^⫮^^\revnmid^R^mathrel^^DOES NOT DIVIDE WITH REVERSED NEGATION SLASH
+02AEF^⫯^^\cirmid^R^mathrel^^VERTICAL LINE WITH CIRCLE ABOVE
+02AF0^⫰^^\midcir^R^mathrel^^VERTICAL LINE WITH CIRCLE BELOW
+02AF1^⫱^^\topcir^N^mathord^^DOWN TACK WITH CIRCLE BELOW
+02AF2^⫲^^\nhpar^R^mathrel^^PARALLEL WITH HORIZONTAL STROKE
+02AF3^⫳^^\parsim^R^mathrel^^PARALLEL WITH TILDE OPERATOR
+02AF4^⫴^\interleave^\interleave^B^mathbin^stmaryrd^TRIPLE VERTICAL BAR BINARY RELATION
+02AF5^⫵^^\nhVvert^B^mathbin^^TRIPLE VERTICAL BAR WITH HORIZONTAL STROKE
+02AF6^⫶^^\threedotcolon^B^mathbin^^TRIPLE COLON OPERATOR
+02AF7^⫷^^\lllnest^R^mathrel^^TRIPLE NESTED LESS-THAN
+02AF8^⫸^^\gggnest^R^mathrel^^TRIPLE NESTED GREATER-THAN
+02AF9^⫹^^\leqqslant^R^mathrel^^DOUBLE-LINE SLANTED LESS-THAN OR EQUAL TO
+02AFA^⫺^^\geqqslant^R^mathrel^^DOUBLE-LINE SLANTED GREATER-THAN OR EQUAL TO
+02AFB^⫻^^\trslash^B^mathbin^^TRIPLE SOLIDUS BINARY RELATION
+02AFC^⫼^\biginterleave^\biginterleave^L^mathop^stmaryrd^LARGE TRIPLE VERTICAL BAR OPERATOR
+02AFD^⫽^\sslash^\sslash^B^mathbin^stmaryrd^# \varparallel (txfonts), DOUBLE SOLIDUS OPERATOR
+02AFE^⫾^\talloblong^\talloblong^B^mathbin^stmaryrd^WHITE VERTICAL BAR
+02AFF^⫿^^\bigtalloblong^L^mathop^^N-ARY WHITE VERTICAL BAR
+02B00^⬀^^^R?^mathord^^NORTH EAST WHITE ARROW
+02B01^⬁^^^R?^mathord^^NORTH WEST WHITE ARROW
+02B02^⬂^^^R?^mathord^^SOUTH EAST WHITE ARROW
+02B03^⬃^^^R?^mathord^^SOUTH WEST WHITE ARROW
+02B04^⬄^^^R?^mathord^^LEFT RIGHT WHITE ARROW
+02B05^⬅^^^R?^mathord^^LEFTWARDS BLACK ARROW
+02B06^⬆^^^R?^mathord^^UPWARDS BLACK ARROW
+02B07^⬇^^^R?^mathord^^DOWNWARDS BLACK ARROW
+02B08^⬈^^^R?^mathord^^NORTH EAST BLACK ARROW
+02B09^⬉^^^R?^mathord^^NORTH WEST BLACK ARROW
+02B0A^⬊^^^R?^mathord^^SOUTH EAST BLACK ARROW
+02B0B^⬋^^^R?^mathord^^SOUTH WEST BLACK ARROW
+02B0C^⬌^^^R?^mathord^^LEFT RIGHT BLACK ARROW
+02B0D^⬍^^^R?^mathord^^UP DOWN BLACK ARROW
+02B0E^⬎^^^R?^mathord^^RIGHTWARDS ARROW WITH TIP DOWNWARDS
+02B0F^⬏^^^R?^mathord^^RIGHTWARDS ARROW WITH TIP UPWARDS
+02B10^⬐^^^R?^mathord^^LEFTWARDS ARROW WITH TIP DOWNWARDS
+02B11^⬑^^^R?^mathord^^LEFTWARDS ARROW WITH TIP UPWARDS
+02B12^⬒^^\squaretopblack^N^mathord^^SQUARE WITH TOP HALF BLACK
+02B13^⬓^^\squarebotblack^N^mathord^^SQUARE WITH BOTTOM HALF BLACK
+02B14^⬔^^\squareurblack^N^mathord^^SQUARE WITH UPPER RIGHT DIAGONAL HALF BLACK
+02B15^⬕^^\squarellblack^N^mathord^^SQUARE WITH LOWER LEFT DIAGONAL HALF BLACK
+02B16^⬖^^\diamondleftblack^N^mathord^^DIAMOND WITH LEFT HALF BLACK
+02B17^⬗^^\diamondrightblack^N^mathord^^DIAMOND WITH RIGHT HALF BLACK
+02B18^⬘^^\diamondtopblack^N^mathord^^DIAMOND WITH TOP HALF BLACK
+02B19^⬙^^\diamondbotblack^N^mathord^^DIAMOND WITH BOTTOM HALF BLACK
+02B1A^⬚^^\dottedsquare^^mathord^^DOTTED SQUARE
+02B1B^⬛^\blacksquare^\lgblksquare^^mathord^fourier -amssymb^BLACK LARGE SQUARE
+02B1C^⬜^\square^\lgwhtsquare^^mathord^fourier -amssymb^WHITE LARGE SQUARE
+02B1D^⬝^^\vysmblksquare^^mathord^^# \centerdot (amssymb), t \Squaredot (marvosym), BLACK VERY SMALL SQUARE
+02B1E^⬞^^\vysmwhtsquare^^mathord^^WHITE VERY SMALL SQUARE
+02B1F^⬟^^\pentagonblack^^mathord^^BLACK PENTAGON
+02B20^⬠^^\pentagon^N^mathord^^WHITE PENTAGON
+02B21^⬡^^\varhexagon^N^mathord^^WHITE HEXAGON
+02B22^⬢^^\varhexagonblack^N^mathord^^BLACK HEXAGON
+02B23^⬣^^\hexagonblack^N^mathord^^HORIZONTAL BLACK HEXAGON
+02B24^⬤^^\lgblkcircle^^mathord^^BLACK LARGE CIRCLE
+02B25^⬥^^\mdblkdiamond^^mathord^^BLACK MEDIUM DIAMOND
+02B26^⬦^^\mdwhtdiamond^^mathord^^WHITE MEDIUM DIAMOND
+02B27^⬧^^\mdblklozenge^^mathord^^# \blacklozenge (amssymb), BLACK MEDIUM LOZENGE
+02B28^⬨^^\mdwhtlozenge^^mathord^^# \lozenge (amssymb), WHITE MEDIUM LOZENGE
+02B29^⬩^^\smblkdiamond^^mathord^^BLACK SMALL DIAMOND
+02B2A^⬪^^\smblklozenge^^mathord^^BLACK SMALL LOZENGE
+02B2B^⬫^^\smwhtlozenge^^mathord^^WHITE SMALL LOZENGE
+02B2C^⬬^^\blkhorzoval^^mathord^^BLACK HORIZONTAL ELLIPSE
+02B2D^⬭^^\whthorzoval^^mathord^^WHITE HORIZONTAL ELLIPSE
+02B2E^⬮^^\blkvertoval^^mathord^^BLACK VERTICAL ELLIPSE
+02B2F^⬯^^\whtvertoval^^mathord^^WHITE VERTICAL ELLIPSE
+02B30^⬰^^\circleonleftarrow^^mathrel^^LEFT ARROW WITH SMALL CIRCLE
+02B31^⬱^^\leftthreearrows^^mathrel^^THREE LEFTWARDS ARROWS
+02B32^⬲^^\leftarrowonoplus^^mathrel^^LEFT ARROW WITH CIRCLED PLUS
+02B33^⬳^^\longleftsquigarrow^^mathrel^^LONG LEFTWARDS SQUIGGLE ARROW
+02B34^⬴^^\nvtwoheadleftarrow^^mathrel^^LEFTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE
+02B35^⬵^^\nVtwoheadleftarrow^^mathrel^^LEFTWARDS TWO-HEADED ARROW WITH DOUBLE VERTICAL STROKE
+02B36^⬶^^\twoheadmapsfrom^^mathrel^^LEFTWARDS TWO-HEADED ARROW FROM BAR
+02B37^⬷^^\twoheadleftdbkarrow^^mathrel^^leftwards two-headed triple-dash arrow
+02B38^⬸^^\leftdotarrow^^mathrel^^LEFTWARDS ARROW WITH DOTTED STEM
+02B39^⬹^^\nvleftarrowtail^^mathrel^^LEFTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
+02B3A^⬺^^\nVleftarrowtail^^mathrel^^LEFTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
+02B3B^⬻^^\twoheadleftarrowtail^^mathrel^^LEFTWARDS TWO-HEADED ARROW WITH TAIL
+02B3C^⬼^^\nvtwoheadleftarrowtail^^mathrel^^LEFTWARDS TWO-HEADED ARROW WITH TAIL WITH VERTICAL STROKE
+02B3D^⬽^^\nVtwoheadleftarrowtail^^mathrel^^LEFTWARDS TWO-HEADED ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE
+02B3E^⬾^^\leftarrowx^^mathrel^^LEFTWARDS ARROW THROUGH X
+02B3F^⬿^^\leftcurvedarrow^^mathrel^^WAVE ARROW POINTING DIRECTLY LEFT
+02B40^⭀^^\equalleftarrow^^mathrel^^EQUALS SIGN ABOVE LEFTWARDS ARROW
+02B41^⭁^^\bsimilarleftarrow^^mathrel^^REVERSE TILDE OPERATOR ABOVE LEFTWARDS ARROW
+02B42^⭂^^\leftarrowbackapprox^^mathrel^^LEFTWARDS ARROW ABOVE REVERSE ALMOST EQUAL TO
+02B43^⭃^^\rightarrowgtr^^mathrel^^rightwards arrow through less-than
+02B44^⭄^^\rightarrowsupset^^mathrel^^rightwards arrow through subset
+02B45^⭅^^\LLeftarrow^^mathrel^^LEFTWARDS QUADRUPLE ARROW
+02B46^⭆^^\RRightarrow^^mathrel^^RIGHTWARDS QUADRUPLE ARROW
+02B47^⭇^^\bsimilarrightarrow^^mathrel^^REVERSE TILDE OPERATOR ABOVE RIGHTWARDS ARROW
+02B48^⭈^^\rightarrowbackapprox^^mathrel^^RIGHTWARDS ARROW ABOVE REVERSE ALMOST EQUAL TO
+02B49^⭉^^\similarleftarrow^^mathrel^^TILDE OPERATOR ABOVE LEFTWARDS ARROW
+02B4A^⭊^^\leftarrowapprox^^mathrel^^LEFTWARDS ARROW ABOVE ALMOST EQUAL TO
+02B4B^⭋^^\leftarrowbsimilar^^mathrel^^LEFTWARDS ARROW ABOVE REVERSE TILDE OPERATOR
+02B4C^⭌^^\rightarrowbsimilar^^mathrel^^righttwards arrow above reverse tilde operator
+02B50^⭐^^\medwhitestar^^mathord^^WHITE MEDIUM STAR
+02B51^⭑^^\medblackstar^^mathord^^black medium star
+02B52^⭒^^\smwhitestar^^mathord^^WHITE SMALL STAR
+02B53^⭓^^\rightpentagonblack^^mathord^^BLACK RIGHT-POINTING PENTAGON
+02B54^⭔^^\rightpentagon^^mathord^^WHITE RIGHT-POINTING PENTAGON
+03008^〈^^^X^mathopen^^# \langle, LEFT ANGLE BRACKET (deprecated for math use)
+03009^〉^^^X^mathclose^^# \rangle, RIGHT ANGLE BRACKET (deprecated for math use)
+03012^〒^^\postalmark^^mathord^^POSTAL MARK
+03014^〔^^\lbrbrak^^mathopen^^left broken bracket
+03015^〕^^\rbrbrak^^mathclose^^right broken bracket
+03018^〘^^\Lbrbrak^^mathopen^^LEFT WHITE TORTOISE SHELL BRACKET
+03019^〙^^\Rbrbrak^^mathclose^^RIGHT WHITE TORTOISE SHELL BRACKET
+0301A^〚^^^X^mathopen^^# \llbracket (stmaryrd), LEFT WHITE SQUARE BRACKET (deprecated for math use)
+0301B^〛^^^X^mathclose^^# \rrbracket (stmaryrd), RIGHT WHITE SQUARE BRACKET (deprecated for math use)
+03030^〰^^\hzigzag^^mathord^^zigzag
+0306E^の^^^N^mathalpha^^HIRAGANA LETTER NO
+0FB29^﬩^^^X^mathord^^HEBREW LETTER ALTERNATIVE PLUS SIGN (doesn't have cross shape)
+0FE00^︀^^^D^mathaccent^^VARIATION SELECTOR-1
+0FE61^﹡^^^X^^^SMALL ASTERISK
+0FE62^﹢^^^X^mathord^^SMALL PLUS SIGN
+0FE63^﹣^^^X^mathord^^SMALL HYPHEN-MINUS
+0FE64^﹤^^^X^mathord^^SMALL LESS-THAN SIGN
+0FE65^﹥^^^X^mathord^^SMALL GREATER-THAN SIGN
+0FE66^﹦^^^X^mathord^^SMALL EQUALS SIGN
+0FE68^﹨^^^X^^^SMALL REVERSE SOLIDUS
+0FF0B^+^^^X^mathord^^FULLWIDTH PLUS SIGN
+0FF1C^<^^^X^mathord^^FULLWIDTH LESS-THAN SIGN
+0FF1D^=^^^X^mathord^^FULLWIDTH EQUALS SIGN
+0FF1E^>^^^X^mathord^^FULLWIDTH GREATER-THAN SIGN
+0FF3C^\^^^X^^^FULLWIDTH REVERSE SOLIDUS
+0FF3E^^^^^X^mathord^^FULLWIDTH CIRCUMFLEX ACCENT
+0FF5C^|^^^X^mathord^^FULLWIDTH VERTICAL LINE
+0FF5E^~^^^X^mathord^^FULLWIDTH TILDE
+0FFE2^¬^^^X^mathord^^FULLWIDTH NOT SIGN
+0FFE9^←^^^X^mathord^^HALFWIDTH LEFTWARDS ARROW
+0FFEA^↑^^^X^mathord^^HALFWIDTH UPWARDS ARROW
+0FFEB^→^^^X^mathord^^HALFWIDTH RIGHTWARDS ARROW
+0FFEC^↓^^^X^mathord^^HALFWIDTH DOWNWARDS ARROW
+1D400^𝐀^\mathbf{A}^\mbfA^A^mathalpha^^MATHEMATICAL BOLD CAPITAL A
+1D401^𝐁^\mathbf{B}^\mbfB^A^mathalpha^^MATHEMATICAL BOLD CAPITAL B
+1D402^𝐂^\mathbf{C}^\mbfC^A^mathalpha^^MATHEMATICAL BOLD CAPITAL C
+1D403^𝐃^\mathbf{D}^\mbfD^A^mathalpha^^MATHEMATICAL BOLD CAPITAL D
+1D404^𝐄^\mathbf{E}^\mbfE^A^mathalpha^^MATHEMATICAL BOLD CAPITAL E
+1D405^𝐅^\mathbf{F}^\mbfF^A^mathalpha^^MATHEMATICAL BOLD CAPITAL F
+1D406^𝐆^\mathbf{G}^\mbfG^A^mathalpha^^MATHEMATICAL BOLD CAPITAL G
+1D407^𝐇^\mathbf{H}^\mbfH^A^mathalpha^^MATHEMATICAL BOLD CAPITAL H
+1D408^𝐈^\mathbf{I}^\mbfI^A^mathalpha^^MATHEMATICAL BOLD CAPITAL I
+1D409^𝐉^\mathbf{J}^\mbfJ^A^mathalpha^^MATHEMATICAL BOLD CAPITAL J
+1D40A^𝐊^\mathbf{K}^\mbfK^A^mathalpha^^MATHEMATICAL BOLD CAPITAL K
+1D40B^𝐋^\mathbf{L}^\mbfL^A^mathalpha^^MATHEMATICAL BOLD CAPITAL L
+1D40C^𝐌^\mathbf{M}^\mbfM^A^mathalpha^^MATHEMATICAL BOLD CAPITAL M
+1D40D^𝐍^\mathbf{N}^\mbfN^A^mathalpha^^MATHEMATICAL BOLD CAPITAL N
+1D40E^𝐎^\mathbf{O}^\mbfO^A^mathalpha^^MATHEMATICAL BOLD CAPITAL O
+1D40F^𝐏^\mathbf{P}^\mbfP^A^mathalpha^^MATHEMATICAL BOLD CAPITAL P
+1D410^𝐐^\mathbf{Q}^\mbfQ^A^mathalpha^^MATHEMATICAL BOLD CAPITAL Q
+1D411^𝐑^\mathbf{R}^\mbfR^A^mathalpha^^MATHEMATICAL BOLD CAPITAL R
+1D412^𝐒^\mathbf{S}^\mbfS^A^mathalpha^^MATHEMATICAL BOLD CAPITAL S
+1D413^𝐓^\mathbf{T}^\mbfT^A^mathalpha^^MATHEMATICAL BOLD CAPITAL T
+1D414^𝐔^\mathbf{U}^\mbfU^A^mathalpha^^MATHEMATICAL BOLD CAPITAL U
+1D415^𝐕^\mathbf{V}^\mbfV^A^mathalpha^^MATHEMATICAL BOLD CAPITAL V
+1D416^𝐖^\mathbf{W}^\mbfW^A^mathalpha^^MATHEMATICAL BOLD CAPITAL W
+1D417^𝐗^\mathbf{X}^\mbfX^A^mathalpha^^MATHEMATICAL BOLD CAPITAL X
+1D418^𝐘^\mathbf{Y}^\mbfY^A^mathalpha^^MATHEMATICAL BOLD CAPITAL Y
+1D419^𝐙^\mathbf{Z}^\mbfZ^A^mathalpha^^MATHEMATICAL BOLD CAPITAL Z
+1D41A^𝐚^\mathbf{a}^\mbfa^A^mathalpha^^MATHEMATICAL BOLD SMALL A
+1D41B^𝐛^\mathbf{b}^\mbfb^A^mathalpha^^MATHEMATICAL BOLD SMALL B
+1D41C^𝐜^\mathbf{c}^\mbfc^A^mathalpha^^MATHEMATICAL BOLD SMALL C
+1D41D^𝐝^\mathbf{d}^\mbfd^A^mathalpha^^MATHEMATICAL BOLD SMALL D
+1D41E^𝐞^\mathbf{e}^\mbfe^A^mathalpha^^MATHEMATICAL BOLD SMALL E
+1D41F^𝐟^\mathbf{f}^\mbff^A^mathalpha^^MATHEMATICAL BOLD SMALL F
+1D420^𝐠^\mathbf{g}^\mbfg^A^mathalpha^^MATHEMATICAL BOLD SMALL G
+1D421^𝐡^\mathbf{h}^\mbfh^A^mathalpha^^MATHEMATICAL BOLD SMALL H
+1D422^𝐢^\mathbf{i}^\mbfi^A^mathalpha^^MATHEMATICAL BOLD SMALL I
+1D423^𝐣^\mathbf{j}^\mbfj^A^mathalpha^^MATHEMATICAL BOLD SMALL J
+1D424^𝐤^\mathbf{k}^\mbfk^A^mathalpha^^MATHEMATICAL BOLD SMALL K
+1D425^𝐥^\mathbf{l}^\mbfl^A^mathalpha^^MATHEMATICAL BOLD SMALL L
+1D426^𝐦^\mathbf{m}^\mbfm^A^mathalpha^^MATHEMATICAL BOLD SMALL M
+1D427^𝐧^\mathbf{n}^\mbfn^A^mathalpha^^MATHEMATICAL BOLD SMALL N
+1D428^𝐨^\mathbf{o}^\mbfo^A^mathalpha^^MATHEMATICAL BOLD SMALL O
+1D429^𝐩^\mathbf{p}^\mbfp^A^mathalpha^^MATHEMATICAL BOLD SMALL P
+1D42A^𝐪^\mathbf{q}^\mbfq^A^mathalpha^^MATHEMATICAL BOLD SMALL Q
+1D42B^𝐫^\mathbf{r}^\mbfr^A^mathalpha^^MATHEMATICAL BOLD SMALL R
+1D42C^𝐬^\mathbf{s}^\mbfs^A^mathalpha^^MATHEMATICAL BOLD SMALL S
+1D42D^𝐭^\mathbf{t}^\mbft^A^mathalpha^^MATHEMATICAL BOLD SMALL T
+1D42E^𝐮^\mathbf{u}^\mbfu^A^mathalpha^^MATHEMATICAL BOLD SMALL U
+1D42F^𝐯^\mathbf{v}^\mbfv^A^mathalpha^^MATHEMATICAL BOLD SMALL V
+1D430^𝐰^\mathbf{w}^\mbfw^A^mathalpha^^MATHEMATICAL BOLD SMALL W
+1D431^𝐱^\mathbf{x}^\mbfx^A^mathalpha^^MATHEMATICAL BOLD SMALL X
+1D432^𝐲^\mathbf{y}^\mbfy^A^mathalpha^^MATHEMATICAL BOLD SMALL Y
+1D433^𝐳^\mathbf{z}^\mbfz^A^mathalpha^^MATHEMATICAL BOLD SMALL Z
+1D434^𝐴^A^\mitA^A^mathalpha^-frenchstyle^= \mathit{A}, MATHEMATICAL ITALIC CAPITAL A
+1D435^𝐵^B^\mitB^A^mathalpha^-frenchstyle^= \mathit{B}, MATHEMATICAL ITALIC CAPITAL B
+1D436^𝐶^C^\mitC^A^mathalpha^-frenchstyle^= \mathit{C}, MATHEMATICAL ITALIC CAPITAL C
+1D437^𝐷^D^\mitD^A^mathalpha^-frenchstyle^= \mathit{D}, MATHEMATICAL ITALIC CAPITAL D
+1D438^𝐸^E^\mitE^A^mathalpha^-frenchstyle^= \mathit{E}, MATHEMATICAL ITALIC CAPITAL E
+1D439^𝐹^F^\mitF^A^mathalpha^-frenchstyle^= \mathit{F}, MATHEMATICAL ITALIC CAPITAL F
+1D43A^𝐺^G^\mitG^A^mathalpha^-frenchstyle^= \mathit{G}, MATHEMATICAL ITALIC CAPITAL G
+1D43B^𝐻^H^\mitH^A^mathalpha^-frenchstyle^= \mathit{H}, MATHEMATICAL ITALIC CAPITAL H
+1D43C^𝐼^I^\mitI^A^mathalpha^-frenchstyle^= \mathit{I}, MATHEMATICAL ITALIC CAPITAL I
+1D43D^𝐽^J^\mitJ^A^mathalpha^-frenchstyle^= \mathit{J}, MATHEMATICAL ITALIC CAPITAL J
+1D43E^𝐾^K^\mitK^A^mathalpha^-frenchstyle^= \mathit{K}, MATHEMATICAL ITALIC CAPITAL K
+1D43F^𝐿^L^\mitL^A^mathalpha^-frenchstyle^= \mathit{L}, MATHEMATICAL ITALIC CAPITAL L
+1D440^𝑀^M^\mitM^A^mathalpha^-frenchstyle^= \mathit{M}, MATHEMATICAL ITALIC CAPITAL M
+1D441^𝑁^N^\mitN^A^mathalpha^-frenchstyle^= \mathit{N}, MATHEMATICAL ITALIC CAPITAL N
+1D442^𝑂^O^\mitO^A^mathalpha^-frenchstyle^= \mathit{O}, MATHEMATICAL ITALIC CAPITAL O
+1D443^𝑃^P^\mitP^A^mathalpha^-frenchstyle^= \mathit{P}, MATHEMATICAL ITALIC CAPITAL P
+1D444^𝑄^Q^\mitQ^A^mathalpha^-frenchstyle^= \mathit{Q}, MATHEMATICAL ITALIC CAPITAL Q
+1D445^𝑅^R^\mitR^A^mathalpha^-frenchstyle^= \mathit{R}, MATHEMATICAL ITALIC CAPITAL R
+1D446^𝑆^S^\mitS^A^mathalpha^-frenchstyle^= \mathit{S}, MATHEMATICAL ITALIC CAPITAL S
+1D447^𝑇^T^\mitT^A^mathalpha^-frenchstyle^= \mathit{T}, MATHEMATICAL ITALIC CAPITAL T
+1D448^𝑈^U^\mitU^A^mathalpha^-frenchstyle^= \mathit{U}, MATHEMATICAL ITALIC CAPITAL U
+1D449^𝑉^V^\mitV^A^mathalpha^-frenchstyle^= \mathit{V}, MATHEMATICAL ITALIC CAPITAL V
+1D44A^𝑊^W^\mitW^A^mathalpha^-frenchstyle^= \mathit{W}, MATHEMATICAL ITALIC CAPITAL W
+1D44B^𝑋^X^\mitX^A^mathalpha^-frenchstyle^= \mathit{X}, MATHEMATICAL ITALIC CAPITAL X
+1D44C^𝑌^Y^\mitY^A^mathalpha^-frenchstyle^= \mathit{Y}, MATHEMATICAL ITALIC CAPITAL Y
+1D44D^𝑍^Z^\mitZ^A^mathalpha^-frenchstyle^= \mathit{Z}, MATHEMATICAL ITALIC CAPITAL Z
+1D44E^𝑎^a^\mita^A^mathalpha^-uprightstyle^= \mathit{a}, MATHEMATICAL ITALIC SMALL A
+1D44F^𝑏^b^\mitb^A^mathalpha^-uprightstyle^= \mathit{b}, MATHEMATICAL ITALIC SMALL B
+1D450^𝑐^c^\mitc^A^mathalpha^-uprightstyle^= \mathit{c}, MATHEMATICAL ITALIC SMALL C
+1D451^𝑑^d^\mitd^A^mathalpha^-uprightstyle^= \mathit{d}, MATHEMATICAL ITALIC SMALL D
+1D452^𝑒^e^\mite^A^mathalpha^-uprightstyle^= \mathit{e}, MATHEMATICAL ITALIC SMALL E
+1D453^𝑓^f^\mitf^A^mathalpha^-uprightstyle^= \mathit{f}, MATHEMATICAL ITALIC SMALL F
+1D454^𝑔^g^\mitg^A^mathalpha^-uprightstyle^= \mathit{g}, MATHEMATICAL ITALIC SMALL G
+1D456^𝑖^i^\miti^A^mathalpha^-uprightstyle^= \mathit{i}, MATHEMATICAL ITALIC SMALL I
+1D457^𝑗^j^\mitj^A^mathalpha^-uprightstyle^= \mathit{j}, MATHEMATICAL ITALIC SMALL J
+1D458^𝑘^k^\mitk^A^mathalpha^-uprightstyle^= \mathit{k}, MATHEMATICAL ITALIC SMALL K
+1D459^𝑙^l^\mitl^A^mathalpha^-uprightstyle^= \mathit{l}, MATHEMATICAL ITALIC SMALL L
+1D45A^𝑚^m^\mitm^A^mathalpha^-uprightstyle^= \mathit{m}, MATHEMATICAL ITALIC SMALL M
+1D45B^𝑛^n^\mitn^A^mathalpha^-uprightstyle^= \mathit{n}, MATHEMATICAL ITALIC SMALL N
+1D45C^𝑜^o^\mito^A^mathalpha^-uprightstyle^= \mathit{o}, MATHEMATICAL ITALIC SMALL O
+1D45D^𝑝^p^\mitp^A^mathalpha^-uprightstyle^= \mathit{p}, MATHEMATICAL ITALIC SMALL P
+1D45E^𝑞^q^\mitq^A^mathalpha^-uprightstyle^= \mathit{q}, MATHEMATICAL ITALIC SMALL Q
+1D45F^𝑟^r^\mitr^A^mathalpha^-uprightstyle^= \mathit{r}, MATHEMATICAL ITALIC SMALL R
+1D460^𝑠^s^\mits^A^mathalpha^-uprightstyle^= \mathit{s}, MATHEMATICAL ITALIC SMALL S
+1D461^𝑡^t^\mitt^A^mathalpha^-uprightstyle^= \mathit{t}, MATHEMATICAL ITALIC SMALL T
+1D462^𝑢^u^\mitu^A^mathalpha^-uprightstyle^= \mathit{u}, MATHEMATICAL ITALIC SMALL U
+1D463^𝑣^v^\mitv^A^mathalpha^-uprightstyle^= \mathit{v}, MATHEMATICAL ITALIC SMALL V
+1D464^𝑤^w^\mitw^A^mathalpha^-uprightstyle^= \mathit{w}, MATHEMATICAL ITALIC SMALL W
+1D465^𝑥^x^\mitx^A^mathalpha^-uprightstyle^= \mathit{x}, MATHEMATICAL ITALIC SMALL X
+1D466^𝑦^y^\mity^A^mathalpha^-uprightstyle^= \mathit{y}, MATHEMATICAL ITALIC SMALL Y
+1D467^𝑧^z^\mitz^A^mathalpha^-uprightstyle^= \mathit{z}, MATHEMATICAL ITALIC SMALL Z
+1D468^𝑨^\mathbfit{A}^\mbfitA^A^mathalpha^isomath^= \mathbold{A} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL A
+1D469^𝑩^\mathbfit{B}^\mbfitB^A^mathalpha^isomath^= \mathbold{B} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL B
+1D46A^𝑪^\mathbfit{C}^\mbfitC^A^mathalpha^isomath^= \mathbold{C} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL C
+1D46B^𝑫^\mathbfit{D}^\mbfitD^A^mathalpha^isomath^= \mathbold{D} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL D
+1D46C^𝑬^\mathbfit{E}^\mbfitE^A^mathalpha^isomath^= \mathbold{E} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL E
+1D46D^𝑭^\mathbfit{F}^\mbfitF^A^mathalpha^isomath^= \mathbold{F} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL F
+1D46E^𝑮^\mathbfit{G}^\mbfitG^A^mathalpha^isomath^= \mathbold{G} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL G
+1D46F^𝑯^\mathbfit{H}^\mbfitH^A^mathalpha^isomath^= \mathbold{H} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL H
+1D470^𝑰^\mathbfit{I}^\mbfitI^A^mathalpha^isomath^= \mathbold{I} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL I
+1D471^𝑱^\mathbfit{J}^\mbfitJ^A^mathalpha^isomath^= \mathbold{J} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL J
+1D472^𝑲^\mathbfit{K}^\mbfitK^A^mathalpha^isomath^= \mathbold{K} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL K
+1D473^𝑳^\mathbfit{L}^\mbfitL^A^mathalpha^isomath^= \mathbold{L} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL L
+1D474^𝑴^\mathbfit{M}^\mbfitM^A^mathalpha^isomath^= \mathbold{M} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL M
+1D475^𝑵^\mathbfit{N}^\mbfitN^A^mathalpha^isomath^= \mathbold{N} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL N
+1D476^𝑶^\mathbfit{O}^\mbfitO^A^mathalpha^isomath^= \mathbold{O} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL O
+1D477^𝑷^\mathbfit{P}^\mbfitP^A^mathalpha^isomath^= \mathbold{P} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL P
+1D478^𝑸^\mathbfit{Q}^\mbfitQ^A^mathalpha^isomath^= \mathbold{Q} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL Q
+1D479^𝑹^\mathbfit{R}^\mbfitR^A^mathalpha^isomath^= \mathbold{R} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL R
+1D47A^𝑺^\mathbfit{S}^\mbfitS^A^mathalpha^isomath^= \mathbold{S} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL S
+1D47B^𝑻^\mathbfit{T}^\mbfitT^A^mathalpha^isomath^= \mathbold{T} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL T
+1D47C^𝑼^\mathbfit{U}^\mbfitU^A^mathalpha^isomath^= \mathbold{U} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL U
+1D47D^𝑽^\mathbfit{V}^\mbfitV^A^mathalpha^isomath^= \mathbold{V} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL V
+1D47E^𝑾^\mathbfit{W}^\mbfitW^A^mathalpha^isomath^= \mathbold{W} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL W
+1D47F^𝑿^\mathbfit{X}^\mbfitX^A^mathalpha^isomath^= \mathbold{X} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL X
+1D480^𝒀^\mathbfit{Y}^\mbfitY^A^mathalpha^isomath^= \mathbold{Y} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL Y
+1D481^𝒁^\mathbfit{Z}^\mbfitZ^A^mathalpha^isomath^= \mathbold{Z} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL Z
+1D482^𝒂^\mathbfit{a}^\mbfita^A^mathalpha^isomath^= \mathbold{a} (fixmath), MATHEMATICAL BOLD ITALIC SMALL A
+1D483^𝒃^\mathbfit{b}^\mbfitb^A^mathalpha^isomath^= \mathbold{b} (fixmath), MATHEMATICAL BOLD ITALIC SMALL B
+1D484^𝒄^\mathbfit{c}^\mbfitc^A^mathalpha^isomath^= \mathbold{c} (fixmath), MATHEMATICAL BOLD ITALIC SMALL C
+1D485^𝒅^\mathbfit{d}^\mbfitd^A^mathalpha^isomath^= \mathbold{d} (fixmath), MATHEMATICAL BOLD ITALIC SMALL D
+1D486^𝒆^\mathbfit{e}^\mbfite^A^mathalpha^isomath^= \mathbold{e} (fixmath), MATHEMATICAL BOLD ITALIC SMALL E
+1D487^𝒇^\mathbfit{f}^\mbfitf^A^mathalpha^isomath^= \mathbold{f} (fixmath), MATHEMATICAL BOLD ITALIC SMALL F
+1D488^𝒈^\mathbfit{g}^\mbfitg^A^mathalpha^isomath^= \mathbold{g} (fixmath), MATHEMATICAL BOLD ITALIC SMALL G
+1D489^𝒉^\mathbfit{h}^\mbfith^A^mathalpha^isomath^= \mathbold{h} (fixmath), MATHEMATICAL BOLD ITALIC SMALL H
+1D48A^𝒊^\mathbfit{i}^\mbfiti^A^mathalpha^isomath^= \mathbold{i} (fixmath), MATHEMATICAL BOLD ITALIC SMALL I
+1D48B^𝒋^\mathbfit{j}^\mbfitj^A^mathalpha^isomath^= \mathbold{j} (fixmath), MATHEMATICAL BOLD ITALIC SMALL J
+1D48C^𝒌^\mathbfit{k}^\mbfitk^A^mathalpha^isomath^= \mathbold{k} (fixmath), MATHEMATICAL BOLD ITALIC SMALL K
+1D48D^𝒍^\mathbfit{l}^\mbfitl^A^mathalpha^isomath^= \mathbold{l} (fixmath), MATHEMATICAL BOLD ITALIC SMALL L
+1D48E^𝒎^\mathbfit{m}^\mbfitm^A^mathalpha^isomath^= \mathbold{m} (fixmath), MATHEMATICAL BOLD ITALIC SMALL M
+1D48F^𝒏^\mathbfit{n}^\mbfitn^A^mathalpha^isomath^= \mathbold{n} (fixmath), MATHEMATICAL BOLD ITALIC SMALL N
+1D490^𝒐^\mathbfit{o}^\mbfito^A^mathalpha^isomath^= \mathbold{o} (fixmath), MATHEMATICAL BOLD ITALIC SMALL O
+1D491^𝒑^\mathbfit{p}^\mbfitp^A^mathalpha^isomath^= \mathbold{p} (fixmath), MATHEMATICAL BOLD ITALIC SMALL P
+1D492^𝒒^\mathbfit{q}^\mbfitq^A^mathalpha^isomath^= \mathbold{q} (fixmath), MATHEMATICAL BOLD ITALIC SMALL Q
+1D493^𝒓^\mathbfit{r}^\mbfitr^A^mathalpha^isomath^= \mathbold{r} (fixmath), MATHEMATICAL BOLD ITALIC SMALL R
+1D494^𝒔^\mathbfit{s}^\mbfits^A^mathalpha^isomath^= \mathbold{s} (fixmath), MATHEMATICAL BOLD ITALIC SMALL S
+1D495^𝒕^\mathbfit{t}^\mbfitt^A^mathalpha^isomath^= \mathbold{t} (fixmath), MATHEMATICAL BOLD ITALIC SMALL T
+1D496^𝒖^\mathbfit{u}^\mbfitu^A^mathalpha^isomath^= \mathbold{u} (fixmath), MATHEMATICAL BOLD ITALIC SMALL U
+1D497^𝒗^\mathbfit{v}^\mbfitv^A^mathalpha^isomath^= \mathbold{v} (fixmath), MATHEMATICAL BOLD ITALIC SMALL V
+1D498^𝒘^\mathbfit{w}^\mbfitw^A^mathalpha^isomath^= \mathbold{w} (fixmath), MATHEMATICAL BOLD ITALIC SMALL W
+1D499^𝒙^\mathbfit{x}^\mbfitx^A^mathalpha^isomath^= \mathbold{x} (fixmath), MATHEMATICAL BOLD ITALIC SMALL X
+1D49A^𝒚^\mathbfit{y}^\mbfity^A^mathalpha^isomath^= \mathbold{y} (fixmath), MATHEMATICAL BOLD ITALIC SMALL Y
+1D49B^𝒛^\mathbfit{z}^\mbfitz^A^mathalpha^isomath^= \mathbold{z} (fixmath), MATHEMATICAL BOLD ITALIC SMALL Z
+1D49C^𝒜^\mathcal{A}^\mscrA^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL A
+1D49E^𝒞^\mathcal{C}^\mscrC^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL C
+1D49F^𝒟^\mathcal{D}^\mscrD^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL D
+1D4A2^𝒢^\mathcal{G}^\mscrG^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL G
+1D4A5^𝒥^\mathcal{J}^\mscrJ^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL J
+1D4A6^𝒦^\mathcal{K}^\mscrK^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL K
+1D4A9^𝒩^\mathcal{N}^\mscrN^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL N
+1D4AA^𝒪^\mathcal{O}^\mscrO^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL O
+1D4AB^𝒫^\mathcal{P}^\mscrP^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL P
+1D4AC^𝒬^\mathcal{Q}^\mscrQ^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL Q
+1D4AE^𝒮^\mathcal{S}^\mscrS^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL S
+1D4AF^𝒯^\mathcal{T}^\mscrT^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL T
+1D4B0^𝒰^\mathcal{U}^\mscrU^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL U
+1D4B1^𝒱^\mathcal{V}^\mscrV^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL V
+1D4B2^𝒲^\mathcal{W}^\mscrW^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL W
+1D4B3^𝒳^\mathcal{X}^\mscrX^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL X
+1D4B4^𝒴^\mathcal{Y}^\mscrY^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL Y
+1D4B5^𝒵^\mathcal{Z}^\mscrZ^A^mathalpha^^MATHEMATICAL SCRIPT CAPITAL Z
+1D4B6^𝒶^\mathcal{a}^\mscra^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL A
+1D4B7^𝒷^\mathcal{b}^\mscrb^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL B
+1D4B8^𝒸^\mathcal{c}^\mscrc^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL C
+1D4B9^𝒹^\mathcal{d}^\mscrd^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL D
+1D4BB^𝒻^\mathcal{f}^\mscrf^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL F
+1D4BD^𝒽^\mathcal{h}^\mscrh^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL H
+1D4BE^𝒾^\mathcal{i}^\mscri^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL I
+1D4BF^𝒿^\mathcal{j}^\mscrj^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL J
+1D4C0^𝓀^\mathcal{k}^\mscrk^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL K
+1D4C1^𝓁^\mathcal{l}^\mscrl^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL L
+1D4C2^𝓂^\mathcal{m}^\mscrm^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL M
+1D4C3^𝓃^\mathcal{n}^\mscrn^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL N
+1D4C5^𝓅^\mathcal{p}^\mscrp^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL P
+1D4C6^𝓆^\mathcal{q}^\mscrq^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL Q
+1D4C7^𝓇^\mathcal{r}^\mscrr^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL R
+1D4C8^𝓈^\mathcal{s}^\mscrs^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL S
+1D4C9^𝓉^\mathcal{t}^\mscrt^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL T
+1D4CA^𝓊^\mathcal{u}^\mscru^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL U
+1D4CB^𝓋^\mathcal{v}^\mscrv^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL V
+1D4CC^𝓌^\mathcal{w}^\mscrw^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL W
+1D4CD^𝓍^\mathcal{x}^\mscrx^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL X
+1D4CE^𝓎^\mathcal{y}^\mscry^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL Y
+1D4CF^𝓏^\mathcal{z}^\mscrz^A^mathalpha^urwchancal^MATHEMATICAL SCRIPT SMALL Z
+1D4D0^𝓐^^\mbfscrA^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL A
+1D4D1^𝓑^^\mbfscrB^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL B
+1D4D2^𝓒^^\mbfscrC^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL C
+1D4D3^𝓓^^\mbfscrD^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL D
+1D4D4^𝓔^^\mbfscrE^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL E
+1D4D5^𝓕^^\mbfscrF^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL F
+1D4D6^𝓖^^\mbfscrG^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL G
+1D4D7^𝓗^^\mbfscrH^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL H
+1D4D8^𝓘^^\mbfscrI^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL I
+1D4D9^𝓙^^\mbfscrJ^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL J
+1D4DA^𝓚^^\mbfscrK^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL K
+1D4DB^𝓛^^\mbfscrL^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL L
+1D4DC^𝓜^^\mbfscrM^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL M
+1D4DD^𝓝^^\mbfscrN^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL N
+1D4DE^𝓞^^\mbfscrO^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL O
+1D4DF^𝓟^^\mbfscrP^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL P
+1D4E0^𝓠^^\mbfscrQ^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL Q
+1D4E1^𝓡^^\mbfscrR^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL R
+1D4E2^𝓢^^\mbfscrS^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL S
+1D4E3^𝓣^^\mbfscrT^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL T
+1D4E4^𝓤^^\mbfscrU^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL U
+1D4E5^𝓥^^\mbfscrV^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL V
+1D4E6^𝓦^^\mbfscrW^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL W
+1D4E7^𝓧^^\mbfscrX^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL X
+1D4E8^𝓨^^\mbfscrY^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL Y
+1D4E9^𝓩^^\mbfscrZ^A^mathalpha^^MATHEMATICAL BOLD SCRIPT CAPITAL Z
+1D4EA^𝓪^^\mbfscra^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL A
+1D4EB^𝓫^^\mbfscrb^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL B
+1D4EC^𝓬^^\mbfscrc^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL C
+1D4ED^𝓭^^\mbfscrd^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL D
+1D4EE^𝓮^^\mbfscre^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL E
+1D4EF^𝓯^^\mbfscrf^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL F
+1D4F0^𝓰^^\mbfscrg^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL G
+1D4F1^𝓱^^\mbfscrh^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL H
+1D4F2^𝓲^^\mbfscri^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL I
+1D4F3^𝓳^^\mbfscrj^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL J
+1D4F4^𝓴^^\mbfscrk^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL K
+1D4F5^𝓵^^\mbfscrl^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL L
+1D4F6^𝓶^^\mbfscrm^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL M
+1D4F7^𝓷^^\mbfscrn^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL N
+1D4F8^𝓸^^\mbfscro^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL O
+1D4F9^𝓹^^\mbfscrp^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL P
+1D4FA^𝓺^^\mbfscrq^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL Q
+1D4FB^𝓻^^\mbfscrr^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL R
+1D4FC^𝓼^^\mbfscrs^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL S
+1D4FD^𝓽^^\mbfscrt^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL T
+1D4FE^𝓾^^\mbfscru^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL U
+1D4FF^𝓿^^\mbfscrv^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL V
+1D500^𝔀^^\mbfscrw^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL W
+1D501^𝔁^^\mbfscrx^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL X
+1D502^𝔂^^\mbfscry^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL Y
+1D503^𝔃^^\mbfscrz^A^mathalpha^^MATHEMATICAL BOLD SCRIPT SMALL Z
+1D504^𝔄^\mathfrak{A}^\mfrakA^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL A
+1D505^𝔅^\mathfrak{B}^\mfrakB^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL B
+1D507^𝔇^\mathfrak{D}^\mfrakD^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL D
+1D508^𝔈^\mathfrak{E}^\mfrakE^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL E
+1D509^𝔉^\mathfrak{F}^\mfrakF^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL F
+1D50A^𝔊^\mathfrak{G}^\mfrakG^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL G
+1D50D^𝔍^\mathfrak{J}^\mfrakJ^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL J
+1D50E^𝔎^\mathfrak{K}^\mfrakK^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL K
+1D50F^𝔏^\mathfrak{L}^\mfrakL^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL L
+1D510^𝔐^\mathfrak{M}^\mfrakM^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL M
+1D511^𝔑^\mathfrak{N}^\mfrakN^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL N
+1D512^𝔒^\mathfrak{O}^\mfrakO^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL O
+1D513^𝔓^\mathfrak{P}^\mfrakP^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL P
+1D514^𝔔^\mathfrak{Q}^\mfrakQ^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL Q
+1D516^𝔖^\mathfrak{S}^\mfrakS^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL S
+1D517^𝔗^\mathfrak{T}^\mfrakT^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL T
+1D518^𝔘^\mathfrak{U}^\mfrakU^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL U
+1D519^𝔙^\mathfrak{V}^\mfrakV^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL V
+1D51A^𝔚^\mathfrak{W}^\mfrakW^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL W
+1D51B^𝔛^\mathfrak{X}^\mfrakX^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL X
+1D51C^𝔜^\mathfrak{Y}^\mfrakY^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR CAPITAL Y
+1D51E^𝔞^\mathfrak{a}^\mfraka^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL A
+1D51F^𝔟^\mathfrak{b}^\mfrakb^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL B
+1D520^𝔠^\mathfrak{c}^\mfrakc^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL C
+1D521^𝔡^\mathfrak{d}^\mfrakd^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL D
+1D522^𝔢^\mathfrak{e}^\mfrake^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL E
+1D523^𝔣^\mathfrak{f}^\mfrakf^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL F
+1D524^𝔤^\mathfrak{g}^\mfrakg^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL G
+1D525^𝔥^\mathfrak{h}^\mfrakh^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL H
+1D526^𝔦^\mathfrak{i}^\mfraki^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL I
+1D527^𝔧^\mathfrak{j}^\mfrakj^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL J
+1D528^𝔨^\mathfrak{k}^\mfrakk^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL K
+1D529^𝔩^\mathfrak{l}^\mfrakl^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL L
+1D52A^𝔪^\mathfrak{m}^\mfrakm^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL M
+1D52B^𝔫^\mathfrak{n}^\mfrakn^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL N
+1D52C^𝔬^\mathfrak{o}^\mfrako^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL O
+1D52D^𝔭^\mathfrak{p}^\mfrakp^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL P
+1D52E^𝔮^\mathfrak{q}^\mfrakq^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL Q
+1D52F^𝔯^\mathfrak{r}^\mfrakr^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL R
+1D530^𝔰^\mathfrak{s}^\mfraks^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL S
+1D531^𝔱^\mathfrak{t}^\mfrakt^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL T
+1D532^𝔲^\mathfrak{u}^\mfraku^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL U
+1D533^𝔳^\mathfrak{v}^\mfrakv^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL V
+1D534^𝔴^\mathfrak{w}^\mfrakw^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL W
+1D535^𝔵^\mathfrak{x}^\mfrakx^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL X
+1D536^𝔶^\mathfrak{y}^\mfraky^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL Y
+1D537^𝔷^\mathfrak{z}^\mfrakz^A^mathalpha^eufrak^MATHEMATICAL FRAKTUR SMALL Z
+1D538^𝔸^\mathbb{A}^\BbbA^A^mathalpha^mathbb^= \mathds{A} (dsfont), MATHEMATICAL DOUBLE-STRUCK CAPITAL A
+1D539^𝔹^\mathbb{B}^\BbbB^A^mathalpha^mathbb^= \mathds{B} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL B
+1D53B^𝔻^\mathbb{D}^\BbbD^A^mathalpha^mathbb^= \mathds{D} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL D
+1D53C^𝔼^\mathbb{E}^\BbbE^A^mathalpha^mathbb^= \mathds{E} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL E
+1D53D^𝔽^\mathbb{F}^\BbbF^A^mathalpha^mathbb^= \mathds{F} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL F
+1D53E^𝔾^\mathbb{G}^\BbbG^A^mathalpha^mathbb^= \mathds{G} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL G
+1D540^𝕀^\mathbb{I}^\BbbI^A^mathalpha^mathbb^= \mathds{I} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL I
+1D541^𝕁^\mathbb{J}^\BbbJ^A^mathalpha^mathbb^= \mathds{J} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL J
+1D542^𝕂^\mathbb{K}^\BbbK^A^mathalpha^mathbb^= \mathds{K} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL K
+1D543^𝕃^\mathbb{L}^\BbbL^A^mathalpha^mathbb^= \mathds{L} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL L
+1D544^𝕄^\mathbb{M}^\BbbM^A^mathalpha^mathbb^= \mathds{M} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL M
+1D546^𝕆^\mathbb{O}^\BbbO^A^mathalpha^mathbb^= \mathds{O} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL O
+1D54A^𝕊^\mathbb{S}^\BbbS^A^mathalpha^mathbb^= \mathds{S} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL S
+1D54B^𝕋^\mathbb{T}^\BbbT^A^mathalpha^mathbb^= \mathds{T} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL T
+1D54C^𝕌^\mathbb{U}^\BbbU^A^mathalpha^mathbb^= \mathds{U} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL U
+1D54D^𝕍^\mathbb{V}^\BbbV^A^mathalpha^mathbb^= \mathds{V} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL V
+1D54E^𝕎^\mathbb{W}^\BbbW^A^mathalpha^mathbb^= \mathds{W} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL W
+1D54F^𝕏^\mathbb{X}^\BbbX^A^mathalpha^mathbb^= \mathds{X} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL X
+1D550^𝕐^\mathbb{Y}^\BbbY^A^mathalpha^mathbb^= \mathds{Y} (dsfont), matMATHEMATICAL DOUBLE-STRUCK CAPITAL Y
+1D552^𝕒^\mathbb{a}^\Bbba^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL A
+1D553^𝕓^\mathbb{b}^\Bbbb^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL B
+1D554^𝕔^\mathbb{c}^\Bbbc^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL C
+1D555^𝕕^\mathbb{d}^\Bbbd^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL D
+1D556^𝕖^\mathbb{e}^\Bbbe^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL E
+1D557^𝕗^\mathbb{f}^\Bbbf^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL F
+1D558^𝕘^\mathbb{g}^\Bbbg^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL G
+1D559^𝕙^\mathbb{h}^\Bbbh^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL H
+1D55A^𝕚^\mathbb{i}^\Bbbi^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL I
+1D55B^𝕛^\mathbb{j}^\Bbbj^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL J
+1D55C^𝕜^\mathbb{k}^\Bbbk^A^mathalpha^bbold fourier^= \Bbbk (amssymb), MATHEMATICAL DOUBLE-STRUCK SMALL K
+1D55D^𝕝^\mathbb{l}^\Bbbl^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL L
+1D55E^𝕞^\mathbb{m}^\Bbbm^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL M
+1D55F^𝕟^\mathbb{n}^\Bbbn^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL N
+1D560^𝕠^\mathbb{o}^\Bbbo^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL O
+1D561^𝕡^\mathbb{p}^\Bbbp^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL P
+1D562^𝕢^\mathbb{q}^\Bbbq^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL Q
+1D563^𝕣^\mathbb{r}^\Bbbr^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL R
+1D564^𝕤^\mathbb{s}^\Bbbs^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL S
+1D565^𝕥^\mathbb{t}^\Bbbt^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL T
+1D566^𝕦^\mathbb{u}^\Bbbu^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL U
+1D567^𝕧^\mathbb{v}^\Bbbv^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL V
+1D568^𝕨^\mathbb{w}^\Bbbw^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL W
+1D569^𝕩^\mathbb{x}^\Bbbx^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL X
+1D56A^𝕪^\mathbb{y}^\Bbby^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL Y
+1D56B^𝕫^\mathbb{z}^\Bbbz^A^mathalpha^bbold^MATHEMATICAL DOUBLE-STRUCK SMALL Z
+1D56C^𝕬^^\mbffrakA^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL A
+1D56D^𝕭^^\mbffrakB^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL B
+1D56E^𝕮^^\mbffrakC^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL C
+1D56F^𝕯^^\mbffrakD^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL D
+1D570^𝕰^^\mbffrakE^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL E
+1D571^𝕱^^\mbffrakF^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL F
+1D572^𝕲^^\mbffrakG^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL G
+1D573^𝕳^^\mbffrakH^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL H
+1D574^𝕴^^\mbffrakI^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL I
+1D575^𝕵^^\mbffrakJ^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL J
+1D576^𝕶^^\mbffrakK^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL K
+1D577^𝕷^^\mbffrakL^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL L
+1D578^𝕸^^\mbffrakM^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL M
+1D579^𝕹^^\mbffrakN^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL N
+1D57A^𝕺^^\mbffrakO^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL O
+1D57B^𝕻^^\mbffrakP^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL P
+1D57C^𝕼^^\mbffrakQ^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL Q
+1D57D^𝕽^^\mbffrakR^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL R
+1D57E^𝕾^^\mbffrakS^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL S
+1D57F^𝕿^^\mbffrakT^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL T
+1D580^𝖀^^\mbffrakU^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL U
+1D581^𝖁^^\mbffrakV^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL V
+1D582^𝖂^^\mbffrakW^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL W
+1D583^𝖃^^\mbffrakX^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL X
+1D584^𝖄^^\mbffrakY^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL Y
+1D585^𝖅^^\mbffrakZ^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR CAPITAL Z
+1D586^𝖆^^\mbffraka^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL A
+1D587^𝖇^^\mbffrakb^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL B
+1D588^𝖈^^\mbffrakc^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL C
+1D589^𝖉^^\mbffrakd^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL D
+1D58A^𝖊^^\mbffrake^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL E
+1D58B^𝖋^^\mbffrakf^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL F
+1D58C^𝖌^^\mbffrakg^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL G
+1D58D^𝖍^^\mbffrakh^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL H
+1D58E^𝖎^^\mbffraki^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL I
+1D58F^𝖏^^\mbffrakj^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL J
+1D590^𝖐^^\mbffrakk^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL K
+1D591^𝖑^^\mbffrakl^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL L
+1D592^𝖒^^\mbffrakm^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL M
+1D593^𝖓^^\mbffrakn^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL N
+1D594^𝖔^^\mbffrako^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL O
+1D595^𝖕^^\mbffrakp^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL P
+1D596^𝖖^^\mbffrakq^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL Q
+1D597^𝖗^^\mbffrakr^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL R
+1D598^𝖘^^\mbffraks^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL S
+1D599^𝖙^^\mbffrakt^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL T
+1D59A^𝖚^^\mbffraku^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL U
+1D59B^𝖛^^\mbffrakv^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL V
+1D59C^𝖜^^\mbffrakw^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL W
+1D59D^𝖝^^\mbffrakx^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL X
+1D59E^𝖞^^\mbffraky^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL Y
+1D59F^𝖟^^\mbffrakz^A^mathalpha^^MATHEMATICAL BOLD FRAKTUR SMALL Z
+1D5A0^𝖠^\mathsf{A}^\msansA^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL A
+1D5A1^𝖡^\mathsf{B}^\msansB^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL B
+1D5A2^𝖢^\mathsf{C}^\msansC^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL C
+1D5A3^𝖣^\mathsf{D}^\msansD^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL D
+1D5A4^𝖤^\mathsf{E}^\msansE^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL E
+1D5A5^𝖥^\mathsf{F}^\msansF^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL F
+1D5A6^𝖦^\mathsf{G}^\msansG^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL G
+1D5A7^𝖧^\mathsf{H}^\msansH^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL H
+1D5A8^𝖨^\mathsf{I}^\msansI^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL I
+1D5A9^𝖩^\mathsf{J}^\msansJ^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL J
+1D5AA^𝖪^\mathsf{K}^\msansK^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL K
+1D5AB^𝖫^\mathsf{L}^\msansL^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL L
+1D5AC^𝖬^\mathsf{M}^\msansM^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL M
+1D5AD^𝖭^\mathsf{N}^\msansN^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL N
+1D5AE^𝖮^\mathsf{O}^\msansO^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL O
+1D5AF^𝖯^\mathsf{P}^\msansP^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL P
+1D5B0^𝖰^\mathsf{Q}^\msansQ^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL Q
+1D5B1^𝖱^\mathsf{R}^\msansR^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL R
+1D5B2^𝖲^\mathsf{S}^\msansS^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL S
+1D5B3^𝖳^\mathsf{T}^\msansT^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL T
+1D5B4^𝖴^\mathsf{U}^\msansU^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL U
+1D5B5^𝖵^\mathsf{V}^\msansV^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL V
+1D5B6^𝖶^\mathsf{W}^\msansW^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL W
+1D5B7^𝖷^\mathsf{X}^\msansX^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL X
+1D5B8^𝖸^\mathsf{Y}^\msansY^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL Y
+1D5B9^𝖹^\mathsf{Z}^\msansZ^A^mathalpha^^MATHEMATICAL SANS-SERIF CAPITAL Z
+1D5BA^𝖺^\mathsf{a}^\msansa^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL A
+1D5BB^𝖻^\mathsf{b}^\msansb^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL B
+1D5BC^𝖼^\mathsf{c}^\msansc^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL C
+1D5BD^𝖽^\mathsf{d}^\msansd^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL D
+1D5BE^𝖾^\mathsf{e}^\msanse^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL E
+1D5BF^𝖿^\mathsf{f}^\msansf^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL F
+1D5C0^𝗀^\mathsf{g}^\msansg^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL G
+1D5C1^𝗁^\mathsf{h}^\msansh^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL H
+1D5C2^𝗂^\mathsf{i}^\msansi^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL I
+1D5C3^𝗃^\mathsf{j}^\msansj^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL J
+1D5C4^𝗄^\mathsf{k}^\msansk^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL K
+1D5C5^𝗅^\mathsf{l}^\msansl^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL L
+1D5C6^𝗆^\mathsf{m}^\msansm^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL M
+1D5C7^𝗇^\mathsf{n}^\msansn^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL N
+1D5C8^𝗈^\mathsf{o}^\msanso^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL O
+1D5C9^𝗉^\mathsf{p}^\msansp^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL P
+1D5CA^𝗊^\mathsf{q}^\msansq^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL Q
+1D5CB^𝗋^\mathsf{r}^\msansr^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL R
+1D5CC^𝗌^\mathsf{s}^\msanss^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL S
+1D5CD^𝗍^\mathsf{t}^\msanst^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL T
+1D5CE^𝗎^\mathsf{u}^\msansu^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL U
+1D5CF^𝗏^\mathsf{v}^\msansv^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL V
+1D5D0^𝗐^\mathsf{w}^\msansw^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL W
+1D5D1^𝗑^\mathsf{x}^\msansx^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL X
+1D5D2^𝗒^\mathsf{y}^\msansy^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL Y
+1D5D3^𝗓^\mathsf{z}^\msansz^A^mathalpha^^MATHEMATICAL SANS-SERIF SMALL Z
+1D5D4^𝗔^\mathsfbf{A}^\mbfsansA^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL A
+1D5D5^𝗕^\mathsfbf{B}^\mbfsansB^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL B
+1D5D6^𝗖^\mathsfbf{C}^\mbfsansC^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL C
+1D5D7^𝗗^\mathsfbf{D}^\mbfsansD^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL D
+1D5D8^𝗘^\mathsfbf{E}^\mbfsansE^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL E
+1D5D9^𝗙^\mathsfbf{F}^\mbfsansF^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL F
+1D5DA^𝗚^\mathsfbf{G}^\mbfsansG^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL G
+1D5DB^𝗛^\mathsfbf{H}^\mbfsansH^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL H
+1D5DC^𝗜^\mathsfbf{I}^\mbfsansI^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL I
+1D5DD^𝗝^\mathsfbf{J}^\mbfsansJ^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL J
+1D5DE^𝗞^\mathsfbf{K}^\mbfsansK^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL K
+1D5DF^𝗟^\mathsfbf{L}^\mbfsansL^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL L
+1D5E0^𝗠^\mathsfbf{M}^\mbfsansM^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL M
+1D5E1^𝗡^\mathsfbf{N}^\mbfsansN^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL N
+1D5E2^𝗢^\mathsfbf{O}^\mbfsansO^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL O
+1D5E3^𝗣^\mathsfbf{P}^\mbfsansP^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL P
+1D5E4^𝗤^\mathsfbf{Q}^\mbfsansQ^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL Q
+1D5E5^𝗥^\mathsfbf{R}^\mbfsansR^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL R
+1D5E6^𝗦^\mathsfbf{S}^\mbfsansS^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL S
+1D5E7^𝗧^\mathsfbf{T}^\mbfsansT^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL T
+1D5E8^𝗨^\mathsfbf{U}^\mbfsansU^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL U
+1D5E9^𝗩^\mathsfbf{V}^\mbfsansV^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL V
+1D5EA^𝗪^\mathsfbf{W}^\mbfsansW^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL W
+1D5EB^𝗫^\mathsfbf{X}^\mbfsansX^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL X
+1D5EC^𝗬^\mathsfbf{Y}^\mbfsansY^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL Y
+1D5ED^𝗭^\mathsfbf{Z}^\mbfsansZ^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL Z
+1D5EE^𝗮^\mathsfbf{a}^\mbfsansa^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL A
+1D5EF^𝗯^\mathsfbf{b}^\mbfsansb^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL B
+1D5F0^𝗰^\mathsfbf{c}^\mbfsansc^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL C
+1D5F1^𝗱^\mathsfbf{d}^\mbfsansd^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL D
+1D5F2^𝗲^\mathsfbf{e}^\mbfsanse^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL E
+1D5F3^𝗳^\mathsfbf{f}^\mbfsansf^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL F
+1D5F4^𝗴^\mathsfbf{g}^\mbfsansg^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL G
+1D5F5^𝗵^\mathsfbf{h}^\mbfsansh^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL H
+1D5F6^𝗶^\mathsfbf{i}^\mbfsansi^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL I
+1D5F7^𝗷^\mathsfbf{j}^\mbfsansj^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL J
+1D5F8^𝗸^\mathsfbf{k}^\mbfsansk^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL K
+1D5F9^𝗹^\mathsfbf{l}^\mbfsansl^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL L
+1D5FA^𝗺^\mathsfbf{m}^\mbfsansm^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL M
+1D5FB^𝗻^\mathsfbf{n}^\mbfsansn^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL N
+1D5FC^𝗼^\mathsfbf{o}^\mbfsanso^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL O
+1D5FD^𝗽^\mathsfbf{p}^\mbfsansp^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL P
+1D5FE^𝗾^\mathsfbf{q}^\mbfsansq^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL Q
+1D5FF^𝗿^\mathsfbf{r}^\mbfsansr^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL R
+1D600^𝘀^\mathsfbf{s}^\mbfsanss^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL S
+1D601^𝘁^\mathsfbf{t}^\mbfsanst^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL T
+1D602^𝘂^\mathsfbf{u}^\mbfsansu^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL U
+1D603^𝘃^\mathsfbf{v}^\mbfsansv^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL V
+1D604^𝘄^\mathsfbf{w}^\mbfsansw^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL W
+1D605^𝘅^\mathsfbf{x}^\mbfsansx^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL X
+1D606^𝘆^\mathsfbf{y}^\mbfsansy^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL Y
+1D607^𝘇^\mathsfbf{z}^\mbfsansz^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL Z
+1D608^𝘈^\mathsfit{A}^\mitsansA^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL A
+1D609^𝘉^\mathsfit{B}^\mitsansB^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL B
+1D60A^𝘊^\mathsfit{C}^\mitsansC^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL C
+1D60B^𝘋^\mathsfit{D}^\mitsansD^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL D
+1D60C^𝘌^\mathsfit{E}^\mitsansE^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL E
+1D60D^𝘍^\mathsfit{F}^\mitsansF^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL F
+1D60E^𝘎^\mathsfit{G}^\mitsansG^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL G
+1D60F^𝘏^\mathsfit{H}^\mitsansH^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL H
+1D610^𝘐^\mathsfit{I}^\mitsansI^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL I
+1D611^𝘑^\mathsfit{J}^\mitsansJ^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL J
+1D612^𝘒^\mathsfit{K}^\mitsansK^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL K
+1D613^𝘓^\mathsfit{L}^\mitsansL^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL L
+1D614^𝘔^\mathsfit{M}^\mitsansM^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL M
+1D615^𝘕^\mathsfit{N}^\mitsansN^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL N
+1D616^𝘖^\mathsfit{O}^\mitsansO^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL O
+1D617^𝘗^\mathsfit{P}^\mitsansP^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL P
+1D618^𝘘^\mathsfit{Q}^\mitsansQ^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL Q
+1D619^𝘙^\mathsfit{R}^\mitsansR^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL R
+1D61A^𝘚^\mathsfit{S}^\mitsansS^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL S
+1D61B^𝘛^\mathsfit{T}^\mitsansT^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL T
+1D61C^𝘜^\mathsfit{U}^\mitsansU^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL U
+1D61D^𝘝^\mathsfit{V}^\mitsansV^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL V
+1D61E^𝘞^\mathsfit{W}^\mitsansW^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL W
+1D61F^𝘟^\mathsfit{X}^\mitsansX^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL X
+1D620^𝘠^\mathsfit{Y}^\mitsansY^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL Y
+1D621^𝘡^\mathsfit{Z}^\mitsansZ^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC CAPITAL Z
+1D622^𝘢^\mathsfit{a}^\mitsansa^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL A
+1D623^𝘣^\mathsfit{b}^\mitsansb^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL B
+1D624^𝘤^\mathsfit{c}^\mitsansc^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL C
+1D625^𝘥^\mathsfit{d}^\mitsansd^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL D
+1D626^𝘦^\mathsfit{e}^\mitsanse^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL E
+1D627^𝘧^\mathsfit{f}^\mitsansf^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL F
+1D628^𝘨^\mathsfit{g}^\mitsansg^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL G
+1D629^𝘩^\mathsfit{h}^\mitsansh^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL H
+1D62A^𝘪^\mathsfit{i}^\mitsansi^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL I
+1D62B^𝘫^\mathsfit{j}^\mitsansj^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL J
+1D62C^𝘬^\mathsfit{k}^\mitsansk^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL K
+1D62D^𝘭^\mathsfit{l}^\mitsansl^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL L
+1D62E^𝘮^\mathsfit{m}^\mitsansm^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL M
+1D62F^𝘯^\mathsfit{n}^\mitsansn^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL N
+1D630^𝘰^\mathsfit{o}^\mitsanso^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL O
+1D631^𝘱^\mathsfit{p}^\mitsansp^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL P
+1D632^𝘲^\mathsfit{q}^\mitsansq^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL Q
+1D633^𝘳^\mathsfit{r}^\mitsansr^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL R
+1D634^𝘴^\mathsfit{s}^\mitsanss^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL S
+1D635^𝘵^\mathsfit{t}^\mitsanst^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL T
+1D636^𝘶^\mathsfit{u}^\mitsansu^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL U
+1D637^𝘷^\mathsfit{v}^\mitsansv^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL V
+1D638^𝘸^\mathsfit{w}^\mitsansw^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL W
+1D639^𝘹^\mathsfit{x}^\mitsansx^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL X
+1D63A^𝘺^\mathsfit{y}^\mitsansy^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL Y
+1D63B^𝘻^\mathsfit{z}^\mitsansz^A^mathalpha^omlmathsfit^MATHEMATICAL SANS-SERIF ITALIC SMALL Z
+1D63C^𝘼^\mathsfbfit{A}^\mbfitsansA^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL A
+1D63D^𝘽^\mathsfbfit{B}^\mbfitsansB^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL B
+1D63E^𝘾^\mathsfbfit{C}^\mbfitsansC^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL C
+1D63F^𝘿^\mathsfbfit{D}^\mbfitsansD^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL D
+1D640^𝙀^\mathsfbfit{E}^\mbfitsansE^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL E
+1D641^𝙁^\mathsfbfit{F}^\mbfitsansF^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL F
+1D642^𝙂^\mathsfbfit{G}^\mbfitsansG^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL G
+1D643^𝙃^\mathsfbfit{H}^\mbfitsansH^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL H
+1D644^𝙄^\mathsfbfit{I}^\mbfitsansI^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL I
+1D645^𝙅^\mathsfbfit{J}^\mbfitsansJ^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL J
+1D646^𝙆^\mathsfbfit{K}^\mbfitsansK^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL K
+1D647^𝙇^\mathsfbfit{L}^\mbfitsansL^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL L
+1D648^𝙈^\mathsfbfit{M}^\mbfitsansM^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL M
+1D649^𝙉^\mathsfbfit{N}^\mbfitsansN^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL N
+1D64A^𝙊^\mathsfbfit{O}^\mbfitsansO^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL O
+1D64B^𝙋^\mathsfbfit{P}^\mbfitsansP^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL P
+1D64C^𝙌^\mathsfbfit{Q}^\mbfitsansQ^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Q
+1D64D^𝙍^\mathsfbfit{R}^\mbfitsansR^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL R
+1D64E^𝙎^\mathsfbfit{S}^\mbfitsansS^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL S
+1D64F^𝙏^\mathsfbfit{T}^\mbfitsansT^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL T
+1D650^𝙐^\mathsfbfit{U}^\mbfitsansU^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL U
+1D651^𝙑^\mathsfbfit{V}^\mbfitsansV^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL V
+1D652^𝙒^\mathsfbfit{W}^\mbfitsansW^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL W
+1D653^𝙓^\mathsfbfit{X}^\mbfitsansX^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL X
+1D654^𝙔^\mathsfbfit{Y}^\mbfitsansY^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Y
+1D655^𝙕^\mathsfbfit{Z}^\mbfitsansZ^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL Z
+1D656^𝙖^\mathsfbfit{a}^\mbfitsansa^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL A
+1D657^𝙗^\mathsfbfit{b}^\mbfitsansb^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL B
+1D658^𝙘^\mathsfbfit{c}^\mbfitsansc^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL C
+1D659^𝙙^\mathsfbfit{d}^\mbfitsansd^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL D
+1D65A^𝙚^\mathsfbfit{e}^\mbfitsanse^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL E
+1D65B^𝙛^\mathsfbfit{f}^\mbfitsansf^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL F
+1D65C^𝙜^\mathsfbfit{g}^\mbfitsansg^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL G
+1D65D^𝙝^\mathsfbfit{h}^\mbfitsansh^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL H
+1D65E^𝙞^\mathsfbfit{i}^\mbfitsansi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL I
+1D65F^𝙟^\mathsfbfit{j}^\mbfitsansj^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL J
+1D660^𝙠^\mathsfbfit{k}^\mbfitsansk^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL K
+1D661^𝙡^\mathsfbfit{l}^\mbfitsansl^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL L
+1D662^𝙢^\mathsfbfit{m}^\mbfitsansm^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL M
+1D663^𝙣^\mathsfbfit{n}^\mbfitsansn^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL N
+1D664^𝙤^\mathsfbfit{o}^\mbfitsanso^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL O
+1D665^𝙥^\mathsfbfit{p}^\mbfitsansp^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL P
+1D666^𝙦^\mathsfbfit{q}^\mbfitsansq^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Q
+1D667^𝙧^\mathsfbfit{r}^\mbfitsansr^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL R
+1D668^𝙨^\mathsfbfit{s}^\mbfitsanss^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL S
+1D669^𝙩^\mathsfbfit{t}^\mbfitsanst^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL T
+1D66A^𝙪^\mathsfbfit{u}^\mbfitsansu^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL U
+1D66B^𝙫^\mathsfbfit{v}^\mbfitsansv^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL V
+1D66C^𝙬^\mathsfbfit{w}^\mbfitsansw^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL W
+1D66D^𝙭^\mathsfbfit{x}^\mbfitsansx^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL X
+1D66E^𝙮^\mathsfbfit{y}^\mbfitsansy^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Y
+1D66F^𝙯^\mathsfbfit{z}^\mbfitsansz^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL Z
+1D670^𝙰^\mathtt{A}^\mttA^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL A
+1D671^𝙱^\mathtt{B}^\mttB^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL B
+1D672^𝙲^\mathtt{C}^\mttC^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL C
+1D673^𝙳^\mathtt{D}^\mttD^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL D
+1D674^𝙴^\mathtt{E}^\mttE^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL E
+1D675^𝙵^\mathtt{F}^\mttF^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL F
+1D676^𝙶^\mathtt{G}^\mttG^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL G
+1D677^𝙷^\mathtt{H}^\mttH^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL H
+1D678^𝙸^\mathtt{I}^\mttI^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL I
+1D679^𝙹^\mathtt{J}^\mttJ^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL J
+1D67A^𝙺^\mathtt{K}^\mttK^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL K
+1D67B^𝙻^\mathtt{L}^\mttL^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL L
+1D67C^𝙼^\mathtt{M}^\mttM^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL M
+1D67D^𝙽^\mathtt{N}^\mttN^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL N
+1D67E^𝙾^\mathtt{O}^\mttO^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL O
+1D67F^𝙿^\mathtt{P}^\mttP^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL P
+1D680^𝚀^\mathtt{Q}^\mttQ^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL Q
+1D681^𝚁^\mathtt{R}^\mttR^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL R
+1D682^𝚂^\mathtt{S}^\mttS^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL S
+1D683^𝚃^\mathtt{T}^\mttT^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL T
+1D684^𝚄^\mathtt{U}^\mttU^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL U
+1D685^𝚅^\mathtt{V}^\mttV^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL V
+1D686^𝚆^\mathtt{W}^\mttW^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL W
+1D687^𝚇^\mathtt{X}^\mttX^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL X
+1D688^𝚈^\mathtt{Y}^\mttY^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL Y
+1D689^𝚉^\mathtt{Z}^\mttZ^A^mathalpha^^MATHEMATICAL MONOSPACE CAPITAL Z
+1D68A^𝚊^\mathtt{a}^\mtta^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL A
+1D68B^𝚋^\mathtt{b}^\mttb^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL B
+1D68C^𝚌^\mathtt{c}^\mttc^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL C
+1D68D^𝚍^\mathtt{d}^\mttd^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL D
+1D68E^𝚎^\mathtt{e}^\mtte^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL E
+1D68F^𝚏^\mathtt{f}^\mttf^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL F
+1D690^𝚐^\mathtt{g}^\mttg^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL G
+1D691^𝚑^\mathtt{h}^\mtth^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL H
+1D692^𝚒^\mathtt{i}^\mtti^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL I
+1D693^𝚓^\mathtt{j}^\mttj^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL J
+1D694^𝚔^\mathtt{k}^\mttk^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL K
+1D695^𝚕^\mathtt{l}^\mttl^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL L
+1D696^𝚖^\mathtt{m}^\mttm^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL M
+1D697^𝚗^\mathtt{n}^\mttn^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL N
+1D698^𝚘^\mathtt{o}^\mtto^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL O
+1D699^𝚙^\mathtt{p}^\mttp^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL P
+1D69A^𝚚^\mathtt{q}^\mttq^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL Q
+1D69B^𝚛^\mathtt{r}^\mttr^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL R
+1D69C^𝚜^\mathtt{s}^\mtts^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL S
+1D69D^𝚝^\mathtt{t}^\mttt^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL T
+1D69E^𝚞^\mathtt{u}^\mttu^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL U
+1D69F^𝚟^\mathtt{v}^\mttv^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL V
+1D6A0^𝚠^\mathtt{w}^\mttw^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL W
+1D6A1^𝚡^\mathtt{x}^\mttx^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL X
+1D6A2^𝚢^\mathtt{y}^\mtty^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL Y
+1D6A3^𝚣^\mathtt{z}^\mttz^A^mathalpha^^MATHEMATICAL MONOSPACE SMALL Z
+1D6A4^𝚤^\imath^\imath^A^mathalpha^^MATHEMATICAL ITALIC SMALL DOTLESS I
+1D6A5^𝚥^\jmath^\jmath^A^mathalpha^^MATHEMATICAL ITALIC SMALL DOTLESS J
+1D6A8^𝚨^^\mbfAlpha^A^mathalpha^^MATHEMATICAL BOLD CAPITAL ALPHA
+1D6A9^𝚩^^\mbfBeta^A^mathalpha^^MATHEMATICAL BOLD CAPITAL BETA
+1D6AA^𝚪^\mathbf{\Gamma}^\mbfGamma^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL GAMMA
+1D6AB^𝚫^\mathbf{\Delta}^\mbfDelta^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL DELTA
+1D6AC^𝚬^^\mbfEpsilon^A^mathalpha^^MATHEMATICAL BOLD CAPITAL EPSILON
+1D6AD^𝚭^^\mbfZeta^A^mathalpha^^MATHEMATICAL BOLD CAPITAL ZETA
+1D6AE^𝚮^^\mbfEta^A^mathalpha^^MATHEMATICAL BOLD CAPITAL ETA
+1D6AF^𝚯^\mathbf{\Theta}^\mbfTheta^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL THETA
+1D6B0^𝚰^^\mbfIota^A^mathalpha^^MATHEMATICAL BOLD CAPITAL IOTA
+1D6B1^𝚱^^\mbfKappa^A^mathalpha^^MATHEMATICAL BOLD CAPITAL KAPPA
+1D6B2^𝚲^\mathbf{\Lambda}^\mbfLambda^A^mathalpha^-fourier^mathematical bold capital lambda
+1D6B3^𝚳^^\mbfMu^A^mathalpha^^MATHEMATICAL BOLD CAPITAL MU
+1D6B4^𝚴^^\mbfNu^A^mathalpha^^MATHEMATICAL BOLD CAPITAL NU
+1D6B5^𝚵^\mathbf{\Xi}^\mbfXi^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL XI
+1D6B6^𝚶^^\mbfOmicron^A^mathalpha^^MATHEMATICAL BOLD CAPITAL OMICRON
+1D6B7^𝚷^\mathbf{\Pi}^\mbfPi^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL PI
+1D6B8^𝚸^^\mbfRho^A^mathalpha^^MATHEMATICAL BOLD CAPITAL RHO
+1D6B9^𝚹^^\mbfvarTheta^A^mathalpha^^MATHEMATICAL BOLD CAPITAL THETA SYMBOL
+1D6BA^𝚺^\mathbf{\Sigma}^\mbfSigma^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL SIGMA
+1D6BB^𝚻^^\mbfTau^A^mathalpha^^MATHEMATICAL BOLD CAPITAL TAU
+1D6BC^𝚼^\mathbf{\Upsilon}^\mbfUpsilon^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL UPSILON
+1D6BD^𝚽^\mathbf{\Phi}^\mbfPhi^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL PHI
+1D6BE^𝚾^^\mbfChi^A^mathalpha^^MATHEMATICAL BOLD CAPITAL CHI
+1D6BF^𝚿^\mathbf{\Psi}^\mbfPsi^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL PSI
+1D6C0^𝛀^\mathbf{\Omega}^\mbfOmega^A^mathalpha^-fourier^MATHEMATICAL BOLD CAPITAL OMEGA
+1D6C1^𝛁^^\mbfnabla^A^mathord^^MATHEMATICAL BOLD NABLA
+1D6C2^𝛂^\mathbf{\alpha}^\mbfalpha^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL ALPHA
+1D6C3^𝛃^\mathbf{\beta}^\mbfbeta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL BETA
+1D6C4^𝛄^\mathbf{\gamma}^\mbfgamma^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL GAMMA
+1D6C5^𝛅^\mathbf{\delta}^\mbfdelta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL DELTA
+1D6C6^𝛆^\mathbf{\varepsilon}^\mbfepsilon^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL EPSILON
+1D6C7^𝛇^\mathbf{\zeta}^\mbfzeta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL ZETA
+1D6C8^𝛈^\mathbf{\eta}^\mbfeta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL ETA
+1D6C9^𝛉^\mathbf{\theta}^\mbftheta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL THETA
+1D6CA^𝛊^\mathbf{\iota}^\mbfiota^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL IOTA
+1D6CB^𝛋^\mathbf{\kappa}^\mbfkappa^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL KAPPA
+1D6CC^𝛌^\mathbf{\lambda}^\mbflambda^A^mathalpha^omlmathbf^mathematical bold small lambda
+1D6CD^𝛍^\mathbf{\mu}^\mbfmu^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL MU
+1D6CE^𝛎^\mathbf{\nu}^\mbfnu^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL NU
+1D6CF^𝛏^\mathbf{\xi}^\mbfxi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL XI
+1D6D0^𝛐^^\mbfomicron^A^mathalpha^^MATHEMATICAL BOLD SMALL OMICRON
+1D6D1^𝛑^\mathbf{\pi}^\mbfpi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL PI
+1D6D2^𝛒^\mathbf{\rho}^\mbfrho^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL RHO
+1D6D3^𝛓^\mathbf{\varsigma}^\mbfvarsigma^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL FINAL SIGMA
+1D6D4^𝛔^\mathbf{\sigma}^\mbfsigma^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL SIGMA
+1D6D5^𝛕^\mathbf{\tau}^\mbftau^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL TAU
+1D6D6^𝛖^\mathbf{\upsilon}^\mbfupsilon^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL UPSILON
+1D6D7^𝛗^\mathbf{\varphi}^\mbfvarphi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL PHI
+1D6D8^𝛘^\mathbf{\chi}^\mbfchi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL CHI
+1D6D9^𝛙^\mathbf{\psi}^\mbfpsi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL PSI
+1D6DA^𝛚^\mathbf{\omega}^\mbfomega^A^mathalpha^omlmathbf^MATHEMATICAL BOLD SMALL OMEGA
+1D6DB^𝛛^^\mbfpartial^A^mathord^^MATHEMATICAL BOLD PARTIAL DIFFERENTIAL
+1D6DC^𝛜^\mathbf{\epsilon}^\mbfvarepsilon^A^mathalpha^omlmathbf^MATHEMATICAL BOLD EPSILON SYMBOL
+1D6DD^𝛝^\mathbf{\vartheta}^\mbfvartheta^A^mathalpha^omlmathbf^MATHEMATICAL BOLD THETA SYMBOL
+1D6DE^𝛞^^\mbfvarkappa^A^mathalpha^^MATHEMATICAL BOLD KAPPA SYMBOL
+1D6DF^𝛟^\mathbf{\phi}^\mbfphi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD PHI SYMBOL
+1D6E0^𝛠^\mathbf{\varrho}^\mbfvarrho^A^mathalpha^omlmathbf^MATHEMATICAL BOLD RHO SYMBOL
+1D6E1^𝛡^\mathbf{\varpi}^\mbfvarpi^A^mathalpha^omlmathbf^MATHEMATICAL BOLD PI SYMBOL
+1D6E2^𝛢^^\mitAlpha^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL ALPHA
+1D6E3^𝛣^^\mitBeta^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL BETA
+1D6E4^𝛤^\Gamma^\mitGamma^A^mathalpha^slantedGreek^= \mathit{\Gamma} (-fourier), = \varGamma (amsmath fourier), MATHEMATICAL ITALIC CAPITAL GAMMA
+1D6E5^𝛥^\Delta^\mitDelta^A^mathalpha^slantedGreek^= \mathit{\Delta} (-fourier), = \varDelta (amsmath fourier), MATHEMATICAL ITALIC CAPITAL DELTA
+1D6E6^𝛦^^\mitEpsilon^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL EPSILON
+1D6E7^𝛧^^\mitZeta^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL ZETA
+1D6E8^𝛨^^\mitEta^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL ETA
+1D6E9^𝛩^\Theta^\mitTheta^A^mathalpha^slantedGreek^= \mathit{\Theta} (-fourier), = \varTheta (amsmath fourier), MATHEMATICAL ITALIC CAPITAL THETA
+1D6EA^𝛪^^\mitIota^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL IOTA
+1D6EB^𝛫^^\mitKappa^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL KAPPA
+1D6EC^𝛬^\Lambda^\mitLambda^A^mathalpha^slantedGreek^= \mathit{\Lambda} (-fourier), = \varLambda (amsmath fourier), mathematical italic capital lambda
+1D6ED^𝛭^^\mitMu^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL MU
+1D6EE^𝛮^^\mitNu^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL NU
+1D6EF^𝛯^\Xi^\mitXi^A^mathalpha^slantedGreek^= \mathit{\Xi} (-fourier), = \varXi (amsmath fourier), MATHEMATICAL ITALIC CAPITAL XI
+1D6F0^𝛰^^\mitOmicron^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL OMICRON
+1D6F1^𝛱^\Pi^\mitPi^A^mathalpha^slantedGreek^= \mathit{\Pi} (-fourier), = \varPi (amsmath fourier), MATHEMATICAL ITALIC CAPITAL PI
+1D6F2^𝛲^^\mitRho^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL RHO
+1D6F3^𝛳^^\mitvarTheta^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL THETA SYMBOL
+1D6F4^𝛴^\Sigma^\mitSigma^A^mathalpha^slantedGreek^= \mathit{\Sigma} (-fourier), = \varSigma (amsmath fourier), MATHEMATICAL ITALIC CAPITAL SIGMA
+1D6F5^𝛵^^\mitTau^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL TAU
+1D6F6^𝛶^\Upsilon^\mitUpsilon^A^mathalpha^slantedGreek^= \mathit{\Upsilon} (-fourier), = \varUpsilon (amsmath fourier), MATHEMATICAL ITALIC CAPITAL UPSILON
+1D6F7^𝛷^\Phi^\mitPhi^A^mathalpha^slantedGreek^= \mathit{\Phi} (-fourier), = \varPhi (amsmath fourier), MATHEMATICAL ITALIC CAPITAL PHI
+1D6F8^𝛸^^\mitChi^A^mathalpha^^MATHEMATICAL ITALIC CAPITAL CHI
+1D6F9^𝛹^\Psi^\mitPsi^A^mathalpha^slantedGreek^= \mathit{\Psi} (-fourier), = \varPsi (amsmath fourier), MATHEMATICAL ITALIC CAPITAL PSI
+1D6FA^𝛺^\Omega^\mitOmega^A^mathalpha^slantedGreek^= \mathit{\Omega} (-fourier), = \varOmega (amsmath fourier), MATHEMATICAL ITALIC CAPITAL OMEGA
+1D6FB^𝛻^^\mitnabla^A^mathord^^MATHEMATICAL ITALIC NABLA
+1D6FC^𝛼^\alpha^\mitalpha^A^mathalpha^^= \mathit{\alpha} (omlmathit), MATHEMATICAL ITALIC SMALL ALPHA
+1D6FD^𝛽^\beta^\mitbeta^A^mathalpha^^= \mathit{\beta} (omlmathit), MATHEMATICAL ITALIC SMALL BETA
+1D6FE^𝛾^\gamma^\mitgamma^A^mathalpha^^= \mathit{\gamma} (omlmathit), MATHEMATICAL ITALIC SMALL GAMMA
+1D6FF^𝛿^\delta^\mitdelta^A^mathalpha^^= \mathit{\delta} (omlmathit), MATHEMATICAL ITALIC SMALL DELTA
+1D700^𝜀^\varepsilon^\mitepsilon^A^mathalpha^^= \mathit{\varepsilon} (omlmathit), MATHEMATICAL ITALIC SMALL EPSILON
+1D701^𝜁^\zeta^\mitzeta^A^mathalpha^^= \mathit{\zeta} (omlmathit), MATHEMATICAL ITALIC SMALL ZETA
+1D702^𝜂^\eta^\miteta^A^mathalpha^^= \mathit{\eta} (omlmathit), MATHEMATICAL ITALIC SMALL ETA
+1D703^𝜃^\theta^\mittheta^A^mathalpha^^= \mathit{\theta} (omlmathit), MATHEMATICAL ITALIC SMALL THETA
+1D704^𝜄^\iota^\mitiota^A^mathalpha^^= \mathit{\iota} (omlmathit), MATHEMATICAL ITALIC SMALL IOTA
+1D705^𝜅^\kappa^\mitkappa^A^mathalpha^^= \mathit{\kappa} (omlmathit), MATHEMATICAL ITALIC SMALL KAPPA
+1D706^𝜆^\lambda^\mitlambda^A^mathalpha^^= \mathit{\lambda} (omlmathit), mathematical italic small lambda
+1D707^𝜇^\mu^\mitmu^A^mathalpha^^= \mathit{\mu} (omlmathit), MATHEMATICAL ITALIC SMALL MU
+1D708^𝜈^\nu^\mitnu^A^mathalpha^^= \mathit{\nu} (omlmathit), MATHEMATICAL ITALIC SMALL NU
+1D709^𝜉^\xi^\mitxi^A^mathalpha^^= \mathit{\xi} (omlmathit), MATHEMATICAL ITALIC SMALL XI
+1D70A^𝜊^^\mitomicron^A^mathalpha^^MATHEMATICAL ITALIC SMALL OMICRON
+1D70B^𝜋^\pi^\mitpi^A^mathalpha^^= \mathit{\pi} (omlmathit), MATHEMATICAL ITALIC SMALL PI
+1D70C^𝜌^\rho^\mitrho^A^mathalpha^^= \mathit{\rho} (omlmathit), MATHEMATICAL ITALIC SMALL RHO
+1D70D^𝜍^\varsigma^\mitvarsigma^A^mathalpha^^= \mathit{\varsigma} (omlmathit), MATHEMATICAL ITALIC SMALL FINAL SIGMA
+1D70E^𝜎^\sigma^\mitsigma^A^mathalpha^^= \mathit{\sigma} (omlmathit), MATHEMATICAL ITALIC SMALL SIGMA
+1D70F^𝜏^\tau^\mittau^A^mathalpha^^= \mathit{\tau} (omlmathit), MATHEMATICAL ITALIC SMALL TAU
+1D710^𝜐^\upsilon^\mitupsilon^A^mathalpha^^= \mathit{\upsilon} (omlmathit), MATHEMATICAL ITALIC SMALL UPSILON
+1D711^𝜑^\varphi^\mitphi^A^mathalpha^^= \mathit{\varphi} (omlmathit), MATHEMATICAL ITALIC SMALL PHI
+1D712^𝜒^\chi^\mitchi^A^mathalpha^^= \mathit{\chi} (omlmathit), MATHEMATICAL ITALIC SMALL CHI
+1D713^𝜓^\psi^\mitpsi^A^mathalpha^^= \mathit{\psi} (omlmathit), MATHEMATICAL ITALIC SMALL PSI
+1D714^𝜔^\omega^\mitomega^A^mathalpha^^= \mathit{\omega} (omlmathit), MATHEMATICAL ITALIC SMALL OMEGA
+1D715^𝜕^\partial^\mitpartial^A^mathord^^= \mathit{\partial} (omlmathit), MATHEMATICAL ITALIC PARTIAL DIFFERENTIAL
+1D716^𝜖^\epsilon^\mitvarepsilon^A^mathalpha^^= \mathit{\epsilon} (omlmathit), MATHEMATICAL ITALIC EPSILON SYMBOL
+1D717^𝜗^\vartheta^\mitvartheta^A^mathalpha^^= \mathit{\vartheta} (omlmathit), MATHEMATICAL ITALIC THETA SYMBOL
+1D718^𝜘^\varkappa^\mitvarkappa^A^mathalpha^amssymb^MATHEMATICAL ITALIC KAPPA SYMBOL
+1D719^𝜙^\phi^\mitvarphi^A^mathalpha^^= \mathit{\phi} (omlmathit), MATHEMATICAL ITALIC PHI SYMBOL
+1D71A^𝜚^\varrho^\mitvarrho^A^mathalpha^^= \mathit{\varrho} (omlmathit), MATHEMATICAL ITALIC RHO SYMBOL
+1D71B^𝜛^\varpi^\mitvarpi^A^mathalpha^^= \mathit{\varpi} (omlmathit), MATHEMATICAL ITALIC PI SYMBOL
+1D71C^𝜜^^\mbfitAlpha^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL ALPHA
+1D71D^𝜝^^\mbfitBeta^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL BETA
+1D71E^𝜞^\mathbfit{\Gamma}^\mbfitGamma^A^mathalpha^isomath^= \mathbold{\Gamma} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL GAMMA
+1D71F^𝜟^\mathbfit{\Delta}^\mbfitDelta^A^mathalpha^isomath^= \mathbold{\Delta} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL DELTA
+1D720^𝜠^^\mbfitEpsilon^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL EPSILON
+1D721^𝜡^^\mbfitZeta^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL ZETA
+1D722^𝜢^^\mbfitEta^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL ETA
+1D723^𝜣^\mathbfit{\Theta}^\mbfitTheta^A^mathalpha^isomath^= \mathbold{\Theta} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL THETA
+1D724^𝜤^^\mbfitIota^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL IOTA
+1D725^𝜥^^\mbfitKappa^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL KAPPA
+1D726^𝜦^\mathbfit{\Lambda}^\mbfitLambda^A^mathalpha^isomath^= \mathbold{\Lambda} (fixmath), mathematical bold italic capital lambda
+1D727^𝜧^^\mbfitMu^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL MU
+1D728^𝜨^^\mbfitNu^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL NU
+1D729^𝜩^\mathbfit{\Xi}^\mbfitXi^A^mathalpha^isomath^= \mathbold{\Xi} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL XI
+1D72A^𝜪^^\mbfitOmicron^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL OMICRON
+1D72B^𝜫^\mathbfit{\Pi}^\mbfitPi^A^mathalpha^isomath^= \mathbold{\Pi} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL PI
+1D72C^𝜬^^\mbfitRho^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL RHO
+1D72D^𝜭^^\mbfitvarTheta^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL THETA SYMBOL
+1D72E^𝜮^\mathbfit{\Sigma}^\mbfitSigma^A^mathalpha^isomath^= \mathbold{\Sigma} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL SIGMA
+1D72F^𝜯^^\mbfitTau^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL TAU
+1D730^𝜰^\mathbfit{\Upsilon}^\mbfitUpsilon^A^mathalpha^isomath^= \mathbold{\Upsilon} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL UPSILON
+1D731^𝜱^\mathbfit{\Phi}^\mbfitPhi^A^mathalpha^isomath^= \mathbold{\Phi} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL PHI
+1D732^𝜲^^\mbfitChi^A^mathalpha^^MATHEMATICAL BOLD ITALIC CAPITAL CHI
+1D733^𝜳^\mathbfit{\Psi}^\mbfitPsi^A^mathalpha^isomath^= \mathbold{\Psi} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL PSI
+1D734^𝜴^\mathbfit{\Omega}^\mbfitOmega^A^mathalpha^isomath^= \mathbold{\Omega} (fixmath), MATHEMATICAL BOLD ITALIC CAPITAL OMEGA
+1D735^𝜵^^\mbfitnabla^A^mathord^^MATHEMATICAL BOLD ITALIC NABLA
+1D736^𝜶^\mathbfit{\alpha}^\mbfitalpha^A^mathalpha^isomath^= \mathbold{\alpha} (fixmath), MATHEMATICAL BOLD ITALIC SMALL ALPHA
+1D737^𝜷^\mathbfit{\beta}^\mbfitbeta^A^mathalpha^isomath^= \mathbold{\beta} (fixmath), MATHEMATICAL BOLD ITALIC SMALL BETA
+1D738^𝜸^\mathbfit{\gamma}^\mbfitgamma^A^mathalpha^isomath^= \mathbold{\gamma} (fixmath), MATHEMATICAL BOLD ITALIC SMALL GAMMA
+1D739^𝜹^\mathbfit{\delta}^\mbfitdelta^A^mathalpha^isomath^= \mathbold{\delta} (fixmath), MATHEMATICAL BOLD ITALIC SMALL DELTA
+1D73A^𝜺^\mathbfit{\varepsilon}^\mbfitepsilon^A^mathalpha^isomath^= \mathbold{\varepsilon} (fixmath), MATHEMATICAL BOLD ITALIC SMALL EPSILON
+1D73B^𝜻^\mathbfit{\zeta}^\mbfitzeta^A^mathalpha^isomath^= \mathbold{\zeta} (fixmath), MATHEMATICAL BOLD ITALIC SMALL ZETA
+1D73C^𝜼^\mathbfit{\eta}^\mbfiteta^A^mathalpha^isomath^= \mathbold{\eta} (fixmath), MATHEMATICAL BOLD ITALIC SMALL ETA
+1D73D^𝜽^\mathbfit{\theta}^\mbfittheta^A^mathalpha^isomath^= \mathbold{\theta} (fixmath), MATHEMATICAL BOLD ITALIC SMALL THETA
+1D73E^𝜾^\mathbfit{\iota}^\mbfitiota^A^mathalpha^isomath^= \mathbold{\iota} (fixmath), MATHEMATICAL BOLD ITALIC SMALL IOTA
+1D73F^𝜿^\mathbfit{\kappa}^\mbfitkappa^A^mathalpha^isomath^= \mathbold{\kappa} (fixmath), MATHEMATICAL BOLD ITALIC SMALL KAPPA
+1D740^𝝀^\mathbfit{\lambda}^\mbfitlambda^A^mathalpha^isomath^= \mathbold{\lambda} (fixmath), mathematical bold italic small lambda
+1D741^𝝁^\mathbfit{\mu}^\mbfitmu^A^mathalpha^isomath^= \mathbold{\mu} (fixmath), MATHEMATICAL BOLD ITALIC SMALL MU
+1D742^𝝂^\mathbfit{\nu}^\mbfitnu^A^mathalpha^isomath^= \mathbold{\nu} (fixmath), MATHEMATICAL BOLD ITALIC SMALL NU
+1D743^𝝃^\mathbfit{\xi}^\mbfitxi^A^mathalpha^isomath^= \mathbold{\xi} (fixmath), MATHEMATICAL BOLD ITALIC SMALL XI
+1D744^𝝄^^\mbfitomicron^A^mathalpha^^MATHEMATICAL BOLD ITALIC SMALL OMICRON
+1D745^𝝅^\mathbfit{\pi}^\mbfitpi^A^mathalpha^isomath^= \mathbold{\pi} (fixmath), MATHEMATICAL BOLD ITALIC SMALL PI
+1D746^𝝆^\mathbfit{\rho}^\mbfitrho^A^mathalpha^isomath^= \mathbold{\rho} (fixmath), MATHEMATICAL BOLD ITALIC SMALL RHO
+1D747^𝝇^\mathbfit{\varsigma}^\mbfitvarsigma^A^mathalpha^isomath^= \mathbold{\varsigma} (fixmath), MATHEMATICAL BOLD ITALIC SMALL FINAL SIGMA
+1D748^𝝈^\mathbfit{\sigma}^\mbfitsigma^A^mathalpha^isomath^= \mathbold{\sigma} (fixmath), MATHEMATICAL BOLD ITALIC SMALL SIGMA
+1D749^𝝉^\mathbfit{\tau}^\mbfittau^A^mathalpha^isomath^= \mathbold{\tau} (fixmath), MATHEMATICAL BOLD ITALIC SMALL TAU
+1D74A^𝝊^\mathbfit{\upsilon}^\mbfitupsilon^A^mathalpha^isomath^= \mathbold{\upsilon} (fixmath), MATHEMATICAL BOLD ITALIC SMALL UPSILON
+1D74B^𝝋^\mathbfit{\varphi}^\mbfitphi^A^mathalpha^isomath^= \mathbold{\varphi} (fixmath), MATHEMATICAL BOLD ITALIC SMALL PHI
+1D74C^𝝌^\mathbfit{\chi}^\mbfitchi^A^mathalpha^isomath^= \mathbold{\chi} (fixmath), MATHEMATICAL BOLD ITALIC SMALL CHI
+1D74D^𝝍^\mathbfit{\psi}^\mbfitpsi^A^mathalpha^isomath^= \mathbold{\psi} (fixmath), MATHEMATICAL BOLD ITALIC SMALL PSI
+1D74E^𝝎^\mathbfit{\omega}^\mbfitomega^A^mathalpha^isomath^= \mathbold{\omega} (fixmath), MATHEMATICAL BOLD ITALIC SMALL OMEGA
+1D74F^𝝏^^\mbfitpartial^A^mathord^^MATHEMATICAL BOLD ITALIC PARTIAL DIFFERENTIAL
+1D750^𝝐^\mathbfit{\epsilon}^\mbfitvarepsilon^A^mathalpha^isomath^= \mathbold{\epsilon} (fixmath), MATHEMATICAL BOLD ITALIC EPSILON SYMBOL
+1D751^𝝑^\mathbfit{\vartheta}^\mbfitvartheta^A^mathalpha^isomath^= \mathbold{\vartheta} (fixmath), MATHEMATICAL BOLD ITALIC THETA SYMBOL
+1D752^𝝒^^\mbfitvarkappa^A^mathalpha^^MATHEMATICAL BOLD ITALIC KAPPA SYMBOL
+1D753^𝝓^\mathbfit{\phi}^\mbfitvarphi^A^mathalpha^isomath^= \mathbold{\phi} (fixmath), MATHEMATICAL BOLD ITALIC PHI SYMBOL
+1D754^𝝔^\mathbfit{\varrho}^\mbfitvarrho^A^mathalpha^isomath^= \mathbold{\varrho} (fixmath), MATHEMATICAL BOLD ITALIC RHO SYMBOL
+1D755^𝝕^\mathbfit{\varpi}^\mbfitvarpi^A^mathalpha^isomath^= \mathbold{\varpi} (fixmath), MATHEMATICAL BOLD ITALIC PI SYMBOL
+1D756^𝝖^^\mbfsansAlpha^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL ALPHA
+1D757^𝝗^^\mbfsansBeta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL BETA
+1D758^𝝘^\mathsfbf{\Gamma}^\mbfsansGamma^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL GAMMA
+1D759^𝝙^\mathsfbf{\Delta}^\mbfsansDelta^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL DELTA
+1D75A^𝝚^^\mbfsansEpsilon^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL EPSILON
+1D75B^𝝛^^\mbfsansZeta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL ZETA
+1D75C^𝝜^^\mbfsansEta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL ETA
+1D75D^𝝝^\mathsfbf{\Theta}^\mbfsansTheta^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL THETA
+1D75E^𝝞^^\mbfsansIota^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL IOTA
+1D75F^𝝟^^\mbfsansKappa^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL KAPPA
+1D760^𝝠^\mathsfbf{\Lambda}^\mbfsansLambda^A^mathalpha^mathsfbf^mathematical sans-serif bold capital lambda
+1D761^𝝡^^\mbfsansMu^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL MU
+1D762^𝝢^^\mbfsansNu^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL NU
+1D763^𝝣^\mathsfbf{\Xi}^\mbfsansXi^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL XI
+1D764^𝝤^^\mbfsansOmicron^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL OMICRON
+1D765^𝝥^\mathsfbf{\Pi}^\mbfsansPi^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL PI
+1D766^𝝦^^\mbfsansRho^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL RHO
+1D767^𝝧^^\mbfsansvarTheta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL THETA SYMBOL
+1D768^𝝨^\mathsfbf{\Sigma}^\mbfsansSigma^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL SIGMA
+1D769^𝝩^^\mbfsansTau^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL TAU
+1D76A^𝝪^\mathsfbf{\Upsilon}^\mbfsansUpsilon^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL UPSILON
+1D76B^𝝫^\mathsfbf{\Phi}^\mbfsansPhi^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL PHI
+1D76C^𝝬^^\mbfsansChi^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD CAPITAL CHI
+1D76D^𝝭^\mathsfbf{\Psi}^\mbfsansPsi^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL PSI
+1D76E^𝝮^\mathsfbf{\Omega}^\mbfsansOmega^A^mathalpha^mathsfbf^MATHEMATICAL SANS-SERIF BOLD CAPITAL OMEGA
+1D76F^𝝯^^\mbfsansnabla^A^mathord^^MATHEMATICAL SANS-SERIF BOLD NABLA
+1D770^𝝰^\mathsfbf{\alpha}^\mbfsansalpha^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL ALPHA
+1D771^𝝱^\mathsfbf{\beta}^\mbfsansbeta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL BETA
+1D772^𝝲^\mathsfbf{\gamma}^\mbfsansgamma^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL GAMMA
+1D773^𝝳^\mathsfbf{\delta}^\mbfsansdelta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL DELTA
+1D774^𝝴^\mathsfbf{\varepsilon}^\mbfsansepsilon^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL EPSILON
+1D775^𝝵^\mathsfbf{\zeta}^\mbfsanszeta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL ZETA
+1D776^𝝶^\mathsfbf{\eta}^\mbfsanseta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL ETA
+1D777^𝝷^\mathsfbf{\theta}^\mbfsanstheta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL THETA
+1D778^𝝸^\mathsfbf{\iota}^\mbfsansiota^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL IOTA
+1D779^𝝹^\mathsfbf{\kappa}^\mbfsanskappa^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL KAPPA
+1D77A^𝝺^\mathsfbf{\lambda}^\mbfsanslambda^A^mathalpha^omlmathsfbf^mathematical sans-serif bold small lambda
+1D77B^𝝻^\mathsfbf{\mu}^\mbfsansmu^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL MU
+1D77C^𝝼^\mathsfbf{\nu}^\mbfsansnu^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL NU
+1D77D^𝝽^\mathsfbf{\xi}^\mbfsansxi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL XI
+1D77E^𝝾^^\mbfsansomicron^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD SMALL OMICRON
+1D77F^𝝿^\mathsfbf{\pi}^\mbfsanspi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL PI
+1D780^𝞀^\mathsfbf{\rho}^\mbfsansrho^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL RHO
+1D781^𝞁^\mathsfbf{\varsigma}^\mbfsansvarsigma^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL FINAL SIGMA
+1D782^𝞂^\mathsfbf{\sigma}^\mbfsanssigma^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL SIGMA
+1D783^𝞃^\mathsfbf{\tau}^\mbfsanstau^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL TAU
+1D784^𝞄^\mathsfbf{\upsilon}^\mbfsansupsilon^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL UPSILON
+1D785^𝞅^\mathsfbf{\varphi}^\mbfsansphi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL PHI
+1D786^𝞆^\mathsfbf{\chi}^\mbfsanschi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL CHI
+1D787^𝞇^\mathsfbf{\psi}^\mbfsanspsi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL PSI
+1D788^𝞈^\mathsfbf{\omega}^\mbfsansomega^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD SMALL OMEGA
+1D789^𝞉^^\mbfsanspartial^A^mathord^^MATHEMATICAL SANS-SERIF BOLD PARTIAL DIFFERENTIAL
+1D78A^𝞊^\mathsfbf{\epsilon}^\mbfsansvarepsilon^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD EPSILON SYMBOL
+1D78B^𝞋^\mathsfbf{\vartheta}^\mbfsansvartheta^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD THETA SYMBOL
+1D78C^𝞌^^\mbfsansvarkappa^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD KAPPA SYMBOL
+1D78D^𝞍^\mathsfbf{\phi}^\mbfsansvarphi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD PHI SYMBOL
+1D78E^𝞎^\mathsfbf{\varrho}^\mbfsansvarrho^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD RHO SYMBOL
+1D78F^𝞏^\mathsfbf{\varpi}^\mbfsansvarpi^A^mathalpha^omlmathsfbf^MATHEMATICAL SANS-SERIF BOLD PI SYMBOL
+1D790^𝞐^^\mbfitsansAlpha^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL ALPHA
+1D791^𝞑^^\mbfitsansBeta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL BETA
+1D792^𝞒^\mathsfbfit{\Gamma}^\mbfitsansGamma^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL GAMMA
+1D793^𝞓^\mathsfbfit{\Delta}^\mbfitsansDelta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL DELTA
+1D794^𝞔^^\mbfitsansEpsilon^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL EPSILON
+1D795^𝞕^^\mbfitsansZeta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL ZETA
+1D796^𝞖^^\mbfitsansEta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL ETA
+1D797^𝞗^\mathsfbfit{\Theta}^\mbfitsansTheta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL THETA
+1D798^𝞘^^\mbfitsansIota^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL IOTA
+1D799^𝞙^^\mbfitsansKappa^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL KAPPA
+1D79A^𝞚^\mathsfbfit{\Lambda}^\mbfitsansLambda^A^mathalpha^isomath^mathematical sans-serif bold italic capital lambda
+1D79B^𝞛^^\mbfitsansMu^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL MU
+1D79C^𝞜^^\mbfitsansNu^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL NU
+1D79D^𝞝^\mathsfbfit{\Xi}^\mbfitsansXi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL XI
+1D79E^𝞞^^\mbfitsansOmicron^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL OMICRON
+1D79F^𝞟^\mathsfbfit{\Pi}^\mbfitsansPi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PI
+1D7A0^𝞠^^\mbfitsansRho^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL RHO
+1D7A1^𝞡^^\mbfitsansvarTheta^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL THETA SYMBOL
+1D7A2^𝞢^\mathsfbfit{\Sigma}^\mbfitsansSigma^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL SIGMA
+1D7A3^𝞣^^\mbfitsansTau^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL TAU
+1D7A4^𝞤^\mathsfbfit{\Upsilon}^\mbfitsansUpsilon^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL UPSILON
+1D7A5^𝞥^\mathsfbfit{\Phi}^\mbfitsansPhi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PHI
+1D7A6^𝞦^^\mbfitsansChi^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL CHI
+1D7A7^𝞧^\mathsfbfit{\Psi}^\mbfitsansPsi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL PSI
+1D7A8^𝞨^\mathsfbfit{\Omega}^\mbfitsansOmega^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL OMEGA
+1D7A9^𝞩^^\mbfitsansnabla^A^mathord^^MATHEMATICAL SANS-SERIF BOLD ITALIC NABLA
+1D7AA^𝞪^\mathsfbfit{\alpha}^\mbfitsansalpha^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ALPHA
+1D7AB^𝞫^\mathsfbfit{\beta}^\mbfitsansbeta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL BETA
+1D7AC^𝞬^\mathsfbfit{\gamma}^\mbfitsansgamma^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL GAMMA
+1D7AD^𝞭^\mathsfbfit{\delta}^\mbfitsansdelta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL DELTA
+1D7AE^𝞮^\mathsfbfit{\varepsilon}^\mbfitsansepsilon^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL EPSILON
+1D7AF^𝞯^\mathsfbfit{\zeta}^\mbfitsanszeta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ZETA
+1D7B0^𝞰^\mathsfbfit{\eta}^\mbfitsanseta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL ETA
+1D7B1^𝞱^\mathsfbfit{\theta}^\mbfitsanstheta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL THETA
+1D7B2^𝞲^\mathsfbfit{\iota}^\mbfitsansiota^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL IOTA
+1D7B3^𝞳^\mathsfbfit{\kappa}^\mbfitsanskappa^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL KAPPA
+1D7B4^𝞴^\mathsfbfit{\lambda}^\mbfitsanslambda^A^mathalpha^isomath^mathematical sans-serif bold italic small lambda
+1D7B5^𝞵^\mathsfbfit{\mu}^\mbfitsansmu^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL MU
+1D7B6^𝞶^\mathsfbfit{\nu}^\mbfitsansnu^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL NU
+1D7B7^𝞷^\mathsfbfit{\xi}^\mbfitsansxi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL XI
+1D7B8^𝞸^^\mbfitsansomicron^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL OMICRON
+1D7B9^𝞹^\mathsfbfit{\pi}^\mbfitsanspi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PI
+1D7BA^𝞺^\mathsfbfit{\rho}^\mbfitsansrho^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL RHO
+1D7BB^𝞻^\mathsfbfit{\varsigma}^\mbfitsansvarsigma^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL FINAL SIGMA
+1D7BC^𝞼^\mathsfbfit{\sigma}^\mbfitsanssigma^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL SIGMA
+1D7BD^𝞽^\mathsfbfit{\tau}^\mbfitsanstau^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL TAU
+1D7BE^𝞾^\mathsfbfit{\upsilon}^\mbfitsansupsilon^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL UPSILON
+1D7BF^𝞿^\mathsfbfit{\varphi}^\mbfitsansphi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PHI
+1D7C0^𝟀^\mathsfbfit{\chi}^\mbfitsanschi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL CHI
+1D7C1^𝟁^\mathsfbfit{\psi}^\mbfitsanspsi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL PSI
+1D7C2^𝟂^\mathsfbfit{\omega}^\mbfitsansomega^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC SMALL OMEGA
+1D7C3^𝟃^^\mbfitsanspartial^A^mathord^^MATHEMATICAL SANS-SERIF BOLD ITALIC PARTIAL DIFFERENTIAL
+1D7C4^𝟄^\mathsfbfit{\epsilon}^\mbfitsansvarepsilon^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC EPSILON SYMBOL
+1D7C5^𝟅^\mathsfbfit{\vartheta}^\mbfitsansvartheta^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC THETA SYMBOL
+1D7C6^𝟆^^\mbfitsansvarkappa^A^mathalpha^^MATHEMATICAL SANS-SERIF BOLD ITALIC KAPPA SYMBOL
+1D7C7^𝟇^\mathsfbfit{\phi}^\mbfitsansvarphi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC PHI SYMBOL
+1D7C8^𝟈^\mathsfbfit{\varrho}^\mbfitsansvarrho^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC RHO SYMBOL
+1D7C9^𝟉^\mathsfbfit{\varpi}^\mbfitsansvarpi^A^mathalpha^isomath^MATHEMATICAL SANS-SERIF BOLD ITALIC PI SYMBOL
+1D7CA^𝟊^^\mbfDigamma^A^mathalpha^^MATHEMATICAL BOLD CAPITAL DIGAMMA
+1D7CB^𝟋^^\mbfdigamma^A^mathalpha^^MATHEMATICAL BOLD SMALL DIGAMMA
+1D7CE^𝟎^\mathbf{0}^^N^mathord^^mathematical bold digit 0
+1D7CF^𝟏^\mathbf{1}^^N^mathord^^mathematical bold digit 1
+1D7D0^𝟐^\mathbf{2}^^N^mathord^^mathematical bold digit 2
+1D7D1^𝟑^\mathbf{3}^^N^mathord^^mathematical bold digit 3
+1D7D2^𝟒^\mathbf{4}^^N^mathord^^mathematical bold digit 4
+1D7D3^𝟓^\mathbf{5}^^N^mathord^^mathematical bold digit 5
+1D7D4^𝟔^\mathbf{6}^^N^mathord^^mathematical bold digit 6
+1D7D5^𝟕^\mathbf{7}^^N^mathord^^mathematical bold digit 7
+1D7D6^𝟖^\mathbf{8}^^N^mathord^^mathematical bold digit 8
+1D7D7^𝟗^\mathbf{9}^^N^mathord^^mathematical bold digit 9
+1D7D8^𝟘^\mathbb{0}^\Bbbzero^N^mathord^bbold^mathematical double-struck digit 0
+1D7D9^𝟙^\mathbb{1}^\Bbbone^N^mathord^bbold fourier^= \mathds{1} (dsfont), mathematical double-struck digit 1
+1D7DA^𝟚^\mathbb{2}^\Bbbtwo^N^mathord^bbold^mathematical double-struck digit 2
+1D7DB^𝟛^\mathbb{3}^\Bbbthree^N^mathord^bbold^mathematical double-struck digit 3
+1D7DC^𝟜^\mathbb{4}^\Bbbfour^N^mathord^bbold^mathematical double-struck digit 4
+1D7DD^𝟝^\mathbb{5}^\Bbbfive^N^mathord^bbold^mathematical double-struck digit 5
+1D7DE^𝟞^\mathbb{6}^\Bbbsix^N^mathord^bbold^mathematical double-struck digit 6
+1D7DF^𝟟^\mathbb{7}^\Bbbseven^N^mathord^bbold^mathematical double-struck digit 7
+1D7E0^𝟠^\mathbb{8}^\Bbbeight^N^mathord^bbold^mathematical double-struck digit 8
+1D7E1^𝟡^\mathbb{9}^\Bbbnine^N^mathord^bbold^mathematical double-struck digit 9
+1D7E2^𝟢^\mathsf{0}^\msanszero^N^mathord^^mathematical sans-serif digit 0
+1D7E3^𝟣^\mathsf{1}^\msansone^N^mathord^^mathematical sans-serif digit 1
+1D7E4^𝟤^\mathsf{2}^\msanstwo^N^mathord^^mathematical sans-serif digit 2
+1D7E5^𝟥^\mathsf{3}^\msansthree^N^mathord^^mathematical sans-serif digit 3
+1D7E6^𝟦^\mathsf{4}^\msansfour^N^mathord^^mathematical sans-serif digit 4
+1D7E7^𝟧^\mathsf{5}^\msansfive^N^mathord^^mathematical sans-serif digit 5
+1D7E8^𝟨^\mathsf{6}^\msanssix^N^mathord^^mathematical sans-serif digit 6
+1D7E9^𝟩^\mathsf{7}^\msansseven^N^mathord^^mathematical sans-serif digit 7
+1D7EA^𝟪^\mathsf{8}^\msanseight^N^mathord^^mathematical sans-serif digit 8
+1D7EB^𝟫^\mathsf{9}^\msansnine^N^mathord^^mathematical sans-serif digit 9
+1D7EC^𝟬^\mathsfbf{0}^\mbfsanszero^N^mathord^mathsfbf^mathematical sans-serif bold digit 0
+1D7ED^𝟭^\mathsfbf{1}^\mbfsansone^N^mathord^mathsfbf^mathematical sans-serif bold digit 1
+1D7EE^𝟮^\mathsfbf{2}^\mbfsanstwo^N^mathord^mathsfbf^mathematical sans-serif bold digit 2
+1D7EF^𝟯^\mathsfbf{3}^\mbfsansthree^N^mathord^mathsfbf^mathematical sans-serif bold digit 3
+1D7F0^𝟰^\mathsfbf{4}^\mbfsansfour^N^mathord^mathsfbf^mathematical sans-serif bold digit 4
+1D7F1^𝟱^\mathsfbf{5}^\mbfsansfive^N^mathord^mathsfbf^mathematical sans-serif bold digit 5
+1D7F2^𝟲^\mathsfbf{6}^\mbfsanssix^N^mathord^mathsfbf^mathematical sans-serif bold digit 6
+1D7F3^𝟳^\mathsfbf{7}^\mbfsansseven^N^mathord^mathsfbf^mathematical sans-serif bold digit 7
+1D7F4^𝟴^\mathsfbf{8}^\mbfsanseight^N^mathord^mathsfbf^mathematical sans-serif bold digit 8
+1D7F5^𝟵^\mathsfbf{9}^\mbfsansnine^N^mathord^mathsfbf^mathematical sans-serif bold digit 9
+1D7F6^𝟶^\mathtt{0}^\mttzero^N^mathord^^mathematical monospace digit 0
+1D7F7^𝟷^\mathtt{1}^\mttone^N^mathord^^mathematical monospace digit 1
+1D7F8^𝟸^\mathtt{2}^\mtttwo^N^mathord^^mathematical monospace digit 2
+1D7F9^𝟹^\mathtt{3}^\mttthree^N^mathord^^mathematical monospace digit 3
+1D7FA^𝟺^\mathtt{4}^\mttfour^N^mathord^^mathematical monospace digit 4
+1D7FB^𝟻^\mathtt{5}^\mttfive^N^mathord^^mathematical monospace digit 5
+1D7FC^𝟼^\mathtt{6}^\mttsix^N^mathord^^mathematical monospace digit 6
+1D7FD^𝟽^\mathtt{7}^\mttseven^N^mathord^^mathematical monospace digit 7
+1D7FE^𝟾^\mathtt{8}^\mtteight^N^mathord^^mathematical monospace digit 8
+1D7FF^𝟿^\mathtt{9}^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^sin^\sin^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^cos^\cos^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^log^\log^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^lg^\lg^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^ln^\ln^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^tan^\tan^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^^\hfill^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^^\rm^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^^\bf^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^^\mathbf^\mttnine^N^mathord^^mathematical monospace digit 9
+029B0^⦰^\emptyset^N^mathord^^REVERSED EMPTY SET
+XXXXX^min^\min^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^max^\max^\mttnine^N^mathord^^mathematical monospace digit 9
+XXXXX^max^\max^\mttnine^N^mathord^^mathematical monospace digit 9
+0222B^∫^\smallint^\int^L^mathop^^INTEGRAL operator
+029B0^^\varsubsetneqq^N^mathord^^REVERSED EMPTY SET

Tiedoston diff-näkymää rajattu, sillä se on liian suuri
+ 227 - 0
main_clear/sci_clear.py


+ 376 - 0
model/knowledges.txt

@@ -0,0 +1,376 @@
+质点
+参考系与坐标系
+时刻和时间
+路程和位移
+矢量和标量
+速度与速率
+平均速度和瞬时速度
+x-t图象
+加速度
+v-t图象
+光电门传感器的使用
+打点计时器使用
+实验:探究小车速度随时间变化的规律
+速度与时间的关系
+位移-时间的关系
+速度与位移的关系
+自由落体运动
+伽利略研究自由落体的实验
+运动图象
+匀变速直线运动规律和推论
+竖直上抛和类竖直上抛运动
+追及相遇问题
+实验:研究匀变速直线运动及改编实验
+力和力的性质
+重力
+弹力
+胡克定律
+实验:探究弹簧弹力与弹簧形变量的关系
+滑动摩擦力
+静摩擦力
+作用力与平衡力
+牛顿第三定律
+力的合成
+力的分解
+平行四边形定则
+实验:验证力的平行四边形定则
+三力平衡
+多力平衡
+整体法与隔离法
+动态平衡
+静力学的受力分析
+静力学临界问题
+伽利略理想实验
+牛顿第一定律
+实验:探究加速度与力、质量的关系
+实验:牛顿第二定律创新型实验
+牛顿第二定律
+力学单位制
+量纲法
+瞬时问题
+连接体问题
+弹簧动力学问题
+动力学临界问题
+动力学图像问题
+两类动力学
+传送带综合问题
+板块综合问题
+超重与失重
+曲线运动的条件
+曲线运动的特点
+小船渡河问题
+相关联问题
+运动的合成与分解
+研究平抛运动
+平抛运动
+类平抛运动
+斜抛运动
+描述圆周运动的物理量
+匀速圆周运动
+变速圆周运动
+向心力
+实验:探究向心力大小的表达式
+向心加速度
+水平类圆周运动
+竖直类圆周运动
+离心、近心现象
+圆周运动临界问题
+绳杆模型
+开普勒三大定律
+行星运动的两种学说
+万有引力定律
+引力常量的测定
+测中心天体质量
+测中心天体密度
+三种宇宙速度
+卫星运行的规律(追击)
+近地卫星、同步卫星
+变轨与能量
+经典时空观和相对论时空观
+牛顿力学的局限性
+万有引力的两大推论
+双星、多星问题
+功
+功率
+机车启动
+一对滑动摩擦力做功
+重力做功
+重力势能
+重力做功与重力势能的变化关系
+弹性势能
+实验:探究弹簧弹性势能表达式
+动能、动能变化量
+动能定理
+实验:探究做功与物体动能变化的关系
+动能与势能的相互转化
+机械能守恒的条件、机械能守恒定律
+机械能守恒定律的应用
+实验:验证机械能守恒定律
+一对相互作用力做功的特点
+变力做功
+动能定理的应用
+功能关系的应用
+实验:力学综合性实验
+电荷、三种起电方式
+电荷守恒定律
+元电荷、比荷
+库伦定律的内容以及计算
+静电力常量
+库仑定律静力学问题
+库仑定律动力学问题
+电场
+电场强度与电场力
+点电荷的电场、匀强电场
+电场线
+电场强度的叠加
+静电平衡
+静电屏蔽
+静电力做功
+电势能
+电势
+电势差
+等势面
+电势差与电场强度的关系
+电容器
+电容
+带电粒子在电场中的运动
+示波管
+电场线、等势面粒子运动轨迹的关系
+利用等势面确定电场
+带电粒子在电场和重力场组成的复合场中的运动
+带电粒子在交变电场中的运动
+电场与力学综合
+电场中的图像问题
+电场中的功能关系
+电源
+电流表达式
+导体的电阻
+影响导体电阻的因素
+实验:描绘小灯泡伏安特性曲线
+游标卡尺与螺旋测微器
+测定金属的电阻率
+串并联电路
+电压表和电流表构造与改装
+内接法与外接法
+滑动变阻器限流接法与分压接法
+欧姆表原理及使用
+多用电表的原理及使用
+探索黑箱内电阻
+用多用表判断电路故障
+实验:半偏法测电表内阻
+实验:测电阻创新型实验
+电功和电功率
+焦耳定律
+电路中的能量转化
+电动势
+闭合电路的欧姆定律
+闭合电路的动态分析
+闭合电路能量分析
+含电容器的闭合电路
+实验:测定电池的电动势和内阻
+能量与可持续发展
+能量守恒定律
+两种U-I图像
+实验:测电源电动势和内阻创新型实验
+磁现象
+电流的磁效应
+磁场
+地磁场
+磁感线
+安培定则
+几种常见的磁场
+安培分子电流假说
+磁感应强度
+匀强磁场
+磁通量
+产生感应电流的条件
+电磁感应现象的应用
+电磁场
+电磁波
+电磁波谱
+电磁波生活中的应用
+热辐射
+黑体辐射
+能量子
+能级
+寻求碰撞中的不变量
+动量变化量
+动量
+冲量
+动量定理
+动量定理的应用
+动量守恒定律
+实验:验证动量守恒定律
+弹性碰撞
+非弹性碰撞
+反冲运动
+动量和能量综合问题
+弹簧振子
+振动图象
+振幅、周期、频率、相位
+简谐运动的表达式
+简谐运动的回复力
+简谐运动的能量
+单摆
+单摆的周期
+实验:探究单摆的运动、用单摆测定重力加速度
+能量、阻尼振动
+受迫振动
+共振
+简谐运动的综合问题
+波的形成和传播
+横波和纵波
+机械波
+波的图象
+波长、频率和波速
+波的反射
+波的折射
+波的衍射
+波的叠加
+波的干涉
+多普勒效应
+机械振动和机械波
+波的图象与振动图象
+折射率
+实验:测定玻璃的折射率
+全反射
+光导纤维及其运用
+光的干涉
+光的双缝干涉和薄膜干涉
+实验:用双缝干涉测量光的波长
+光的衍射
+偏振、偏振现象及其运用
+激光的特点及其运用
+光的颜色及色散定义
+色散的几种情况
+安培力
+左手定则
+磁电式电流表
+洛伦兹力的方向和大小
+电视显像管的工作原理
+带电粒子在有界磁场中的运动
+带电粒子在磁场中运动的临界问题
+带电粒子在磁场中运动的两个基本公式
+带电粒子在磁场中的多解问题
+带电粒子在匀强磁场中的运动
+速度选择器、磁流体发电机
+质谱仪和回旋加速器
+带电粒子在组合场中的运动
+带电粒子在复合场中的运动
+楞次定律
+右手定则
+感应电动势的产生条件
+法拉第电磁感应定律
+导线切割磁感线时的感应电动势
+电磁感应现象中的感生电场
+涡流
+电磁阻尼和电磁驱动
+互感现象
+自感现象
+自感系数
+磁场能量
+电磁感应电路问题
+电磁感应动力学问题
+电磁感应能量以及动量问题
+电磁感应图象问题
+电磁感应单棒模型
+电磁感应双棒模型
+电磁感应的综合问题
+交变电流
+交变电流的产生
+交流电的四个值
+正弦式交变电流的公式和图像
+电感器对交变电流的阻碍作用
+电容器对交变电流的阻碍作用
+理想变压器
+原副线圈电流、电压、功率的关系
+远距离输电
+交变电流与电磁感应的综合
+理想变压器动态变化
+电磁振荡的产生
+电磁振荡中的过程分析
+电磁波
+麦克斯韦电磁场理论
+无线电波的发射和接收
+电磁波谱
+电磁波的传输、应用
+传感器及种类
+传感器的应用
+利用传感器制作简单的自动控制装置
+物质由大量分子组成
+扩散现象
+布朗运动
+分子间的作用力
+分子动理论
+实验:用油膜法估测分子的大小
+随机性和统计规律
+分子运动速率分布图像
+气体压强的微观意义
+分子动能
+分子势能
+物体的内能
+状态参量与平衡态
+热平衡与温度
+温度计与温标
+玻意耳定律
+充气、抽气
+灌气类问题
+气体的等压变化
+气体的等容变化
+理想气体
+理想气体状态方程
+图象问题
+对气体实验定律的微观解释
+水银柱类综合问题
+活塞类综合问题
+晶体和非晶体
+晶体的微观结构
+液体的微观结构
+液体的表面张力
+浸润和不浸润
+毛细现象
+液晶
+饱和汽、饱和汽压
+气体实验定律综合应用
+焦耳实验
+功与内能的改变
+热与内能的改变
+热力学第一定律
+能量守恒定律(热学)
+热力学第二定律
+热力学定律与气体定律的综合
+黑体与黑体辐射
+黑体辐射的实验规律
+能量量子化
+光电效应
+爱因斯坦光电效应方程
+康普顿效应与光子的动量
+光的波粒二象性
+电子
+原子的核式结构模型
+α粒子散射实验
+光谱与氢原子光谱
+玻尔理论的局限性
+氢原子光谱的实验规律
+氢原子的能级公式和跃迁
+玻尔理论对氢光谱的解释
+物质波
+量子力学的应用
+天然放射现象
+射线的本质
+原子核的组成
+原子核的衰变
+半衰期
+核反应
+放射性同位素及其应用
+人工转变
+质子和中子的发现
+衰变反冲轨迹
+辐射与安全
+核力与四种基本相互作用
+结合能
+质量亏损
+爱因斯坦质能方程
+核裂变、裂变反应堆
+核聚变
+新粒子及分类

+ 425 - 0
model/math_knowledges.txt

@@ -0,0 +1,425 @@
+集合的含义
+元素与集合的关系
+描述法,列举法表示集合
+区间及其表示
+集合包含关系(子集,真子集)
+子集(真子集)个数
+集合的相等关系
+空集
+交集
+并集
+补集、全集
+交集、并集混合运算
+交集、并集、补集的混合运算
+Venn图
+命题、定理、定义
+命题的否定
+四种命题及相互关系
+充分条件、必要条件
+充要条件
+逻辑联结词“或”“且”
+含量词命题的辨析与真假判定
+含量词命题的否定及其真假判定
+等式的基本性质
+恒等式与方程的解集
+方程组的解集
+不等式的基本性质
+利用不等式的基本性质求值或取值范围
+利用不等式的基本性质求值或取值范围
+比较式子(数)大小
+利用基本不等式证明
+利用基本不等式求最值
+一元二次方程的解集
+一元二次方程根与系数的关系
+不等式的解集与不等式组的解集
+绝对值不等式的解法
+一元二次不等式
+分式不等式与高次不等式
+二元一次不等式组表示的平面区域
+求线性目标函数的最值
+线性规划与实际应用
+非线性目标函数的最值问题
+不等式中的恒成立、存在性问题
+绝对值三角不等式
+分析法证明不等式
+综合法证明不等式
+反证法证明不等式
+放缩法证明不等式
+简单形式的柯西不等式
+一般形式的柯西不等式
+函数的概念
+相等函数
+映射
+函数的表示法
+具体函数定义域
+抽象函数定义域
+具体函数求值域(最值)
+抽象函数求值域(最值)
+根据图象求解析式
+根据条件求解析式
+具体函数求值
+抽象函数求值
+作函数图象
+函数图象的平移变换
+函数图象的对称变换
+函数单调性的判断与证明
+具体函数的单调性
+抽象函数的单调性
+利用函数单调性比较大小
+利用函数单调性求值域或最值
+利用单调性解不等式
+复合函数单调性
+具体函数的奇偶性
+函数奇偶性与图象
+抽象函数的奇偶性
+利用函数奇偶性求函数值
+利用函数奇偶性求解析式
+复合函数奇偶性
+求函数周期
+函数周期的运用
+函数图象的中心对称
+函数图象的轴对称
+一次函数
+分式函数
+二次函数
+分段函数解析式
+分段函数奇偶性
+分段函数的图象
+分段函数求值
+分段函数值域
+分段函数单调性
+幂函数解析式
+幂函数的定义域
+幂函数的值域与最值
+幂函数图象
+幂函数的单调性
+幂函数的奇偶性
+利用幂函数性质进行大小比较
+对勾函数
+一次函数模型的应用
+二次函数模型的应用
+分段函数模型的应用
+根式与分数指数幂及互化
+指数幂的运算性质
+指数函数概念辨析与求值
+指数(型)函数的定义域
+指数函数的值域与最值
+指数函数单调性
+指数型函数的奇偶性
+指数型函数的值域与最值
+指数型函数单调性
+指数(型)函数图象的定点
+指数(型)函数的解析式问题
+指数(型)函数图象的识别或变换问题
+利用指数函数性质进行大小比较
+解指数方程
+解指数不等式
+对数的概念及指对互化
+对数的运算性质
+对数换底公式
+对数函数概念辨析与求值
+对数(型)函数的定义域
+对数函数值域与最值
+对数函数单调性
+对数型函数的奇偶性
+对数(型)函数的解析式问题
+对数型函数单调性
+对数型函数值域与最值
+对数(型)函数图象的定点
+对数(型)函数图象的识别或变换问题
+利用对数函数性质进行大小比较
+解对数方程
+解对数不等式
+反函数
+几种函数增长快慢的比较
+函数的零点
+函数零点存在性定理
+零点的个数与分布
+方程的根个数与分布
+二分法
+平均增长率
+幂函数模型的应用
+指数函数模型的应用
+对数函数模型的应用
+其他函数模型的应用
+根据运动状态判定图象
+利用解析式判断图象
+函数的存在性问题
+函数的恒成立问题
+角的概念
+角的终边位置关系(对称关系、终边相同的角)
+弧度制
+弧长公式的有关问题
+扇形面积的有关问题
+正弦与余弦函数的定义
+正、余弦函数值的正负
+正切函数的定义
+正切函数值的正负
+三角函数线的应用(利用三角函数线求角、解不等式、比大小)
+利用同角三角函数的基本关系求值,化简和证明恒等关系
+三角函数齐次式求解
+正、余弦函数的诱导公式
+正切函数的诱导公式
+定义域和值域(或最值)
+单调性及其应用
+奇偶性与对称性及其应用
+周期性及其应用
+根据y=Asin(ωx+φ)图象求解析式或作图
+函数y=Acos(ωx+φ)的图象与性质
+函数y=Atan(ωx+φ)的图象与性质
+正、余弦型函数图象的变换
+正切型函数图象的变换
+两角和与差的余弦
+两角和与差的正弦
+两角和与差的正切
+二倍角的正弦与余弦
+二倍角的正切
+半角公式
+积化和差与和差化积公式
+辅助角公式
+三角函数与实际应用
+可转化为其它函数类型的三角函数问题
+平面向量的概念
+平面向量的加法与减法
+平面向量的数乘运算
+平面向量的共线定理
+平面向量的线性运算
+平面向量数量积的相关概念及基本运算
+平面向量的模及夹角
+投影向量
+投影的数量
+平面向量基本定理
+直线上向量的坐标及其运算
+平面向量的线性坐标运算
+平面向量平行(共线)的坐标运算
+平面向量数量积的坐标运算
+平面向量夹角的坐标运算
+平面向量模长的坐标运算
+平面向量垂直的坐标运算
+平面向量的线性应用
+平面向量的应用
+余弦定理及应用
+正弦定理及应用
+三角形面积公式及应用
+解三角形与实际应用
+复数的扩充与复数的概念
+复数的几何意义
+复数的模
+复数的乘除和乘方
+共轭复数
+复数的三角表示
+空间几何体的结构特征、性质
+空间图象的展开图及应用
+直观图与斜二测画法
+三视图的认知和画法
+三视图与面积综合
+三视图与体积综合
+柱、锥、台的面积
+柱、锥、台的体积
+球的表面积
+球的体积
+内切球、外接球有关问题
+平面的基本性质(基本事实1,2,3)及应用
+三点共线,三线共点,点线共面问题
+空间平行线的传递性及其应用(基本事实4)
+异面直线的判定及证明
+异面直线所成的角
+三点共线,三线共点,点线共面问题
+平面的基本性质(基本事实1,2,3)及应用
+空间点、直线、平面之间的位置关系
+线面平行的判定定理及应用
+线面平行的性质定理及应用
+面面平行的判定定理及应用
+面面平行的性质定理及应用
+空间几何的截面问题
+线面垂直的判定定理及应用
+线面垂直的性质定理及应用
+面面垂直的判定定理及应用
+面面垂直的性质定理及应用
+直线与平面所成角
+二面角
+直接法借助直角三角形求点面距
+等体积法求点面、线面及面面距离
+折叠与动态问题
+简单随机抽样
+系统抽样
+分层随机抽样
+用样本估算总体分布
+从频数到频率、频率分布直方图(含扇形图、折线图及其它)
+茎叶图
+百分位数
+极差、方差、标准差
+随机现象、必然现象
+样本空间
+随机事件
+事件的关系、运算
+互斥、对立事件
+古典概型
+几何概型
+独立事件及其概率
+用频率估计概率
+空间向量及其线性运算
+空间向量的数量积运算
+共面向量定理
+空间向量基本定理
+空间直角坐标系的概念(对称问题)
+空间直角坐标系的常见公式及应用
+空间向量运算的坐标表示
+空间中直线的方向向量
+平面的法向量
+用空间向量研究直线、平面的平行关系
+用空间向量研究直线、平面的垂直关系
+用空间向量研究距离问题
+用空间向量求解直线与直线的夹角
+用空间向量求解直线与平面的夹角
+用空间向量求解平面与平面的夹角
+三垂线定理及其逆定理
+平面中点坐标
+平面两点距离
+直线的斜率或倾斜角
+利用斜率的几何意义求最值
+利用斜率判定三点共线及应用
+直线的方向向量与法向量
+两条直线平行
+两条直线垂直
+直线方程的点斜式
+直线方程的斜截式
+直线方程的两点式
+直线方程的截距式
+直线方程的一般式
+与两直线交点有关的问题
+平面点到直线距离公式及应用
+两条平行线间的距离公式及应用
+对称问题及应用
+直线恒过定点问题
+与直线有关最值问题
+圆的标准方程
+圆的一般方程
+点与圆的位置关系判定及应用
+直线与圆的位置关系判定及应用(圆上几点到直线距离相等问题)
+圆的弦长问题
+圆的切线长问题
+圆的切线方程问题
+圆与圆的位置关系判断及应用
+圆的公共弦
+圆的公切线
+与圆有关最值与范围问题
+与圆有关的定点定值问题
+直线、圆相关的轨迹与方程
+直线、圆相关的轨迹与方程
+椭圆的定义、标准方程
+椭圆的简单几何性质
+椭圆的离心率
+直线与椭圆的位置关系
+双曲线的定义、标准方程
+双曲线的简单几何性质
+渐近线
+双曲线的离心率
+直线与双曲线的位置关系
+抛物线的定义、标准方程
+抛物线的几何性质
+直线与抛物线的位置关系
+动点轨迹方程
+动点轨迹方程
+动点轨迹方程
+曲线与方程
+圆锥曲线与实际应用
+圆锥曲线中的最值与范围问题
+圆锥曲线中的定点、定值问题
+圆锥曲线中的探究性问题
+数列的概念
+求数列的通项或项
+数列的函数特性
+等差数列的定义(含等差中项)
+等差数列的通项公式
+等差数列的前n项和公式
+等差数列的前n项和公式与函数关系
+等差数列的性质与应用
+等比数列的定义(含等比中项)
+等比数列的通项公式
+等比数列的前n项和公式
+等比数列的性质应用
+数列与实际应用
+数学归纳法
+叠加法、叠乘法求数列通项
+由Sn与an求通项
+构造法求通项
+倒序相加法求数列前n项和
+错位相减法求数列前n项和
+裂项相消法求数列前n项和
+分组求和法求数列前n项和
+变化率问题
+导数的概念及其几何意义
+基本初等函数的导数
+导数的四则运算法则
+简单复合函数的导数
+利用导函数求函数单调性
+函数与导函数图象之间的关系
+利用导数解不等式或比较大小
+复合函数的单调区间与应用
+函数的极值与应用
+函数的最值与应用
+复合函数的极值、最值及应用
+导数与实际应用
+定积分与微积分基本定理
+定积分的应用
+分类加法与分步乘法计数原理
+排列数、排列公式及应用
+排列问题的常规方法
+组合数、组合数公式及性质
+组合问题的常规方法
+二项式定理
+二项式系数的性质
+二项式定理的应用
+条件概率
+乘法公式与全概率公式
+独立性与条件概率的关系
+随机变量及其与事件的联系
+离散型随机变量及其分布列
+离散型随机变量的期望与方差
+E(aX+b)、D(aX+b)的应用
+独立重复试验与二项分布
+超几何分布
+正态分布
+相关关系、线性相关及散点图概念
+样本相关系数
+误差分析
+线性回归方程
+非线性回归方程
+独立性检验
+用不等式(组)表示不等关系
+分层抽样
+共轭复数
+全称量词与全称命题
+存在量词与特称命题
+全称命题与特称命题的否定
+正弦函数求值
+余弦函数的图象(五点法作图),定义域和值域
+余弦函数的性质(单调性、奇偶性、周期性、对称性)
+正切函数的图象,定义域和值域(或最值)
+正切函数的性质(单调性、奇偶性、周期性、对称性)
+正弦函数的图象(五点法作图),定义域和值域
+正弦函数的性质(单调性、奇偶性,周期性、对称性)
+平面直角坐标系中的伸缩变换
+余弦函数求值
+正切函数求值
+y=Asin(ωx+φ)求值
+投影
+平面直角坐标系
+解正弦函数方程
+解余弦函数方程
+解正弦函数不等式
+解余弦函数不等式
+圆锥曲线的参数方程
+点的极坐标与直角坐标的互化
+比较法证明不等式
+解正切函数不等式
+参数方程与普通方程的互化
+直线、圆的极坐标方程
+解正切函数方程
+直线的参数方程
+解y=Asin(wx+φ)方程
+解y=Asin(wx+φ)不等式
+参数方程的概念
+复数的加减
+圆的参数方程

+ 376 - 0
model/physics_knowledges.txt

@@ -0,0 +1,376 @@
+质点
+参考系与坐标系
+时刻和时间
+路程和位移
+矢量和标量
+速度与速率
+平均速度和瞬时速度
+x-t图象
+加速度
+v-t图象
+光电门传感器的使用
+打点计时器使用
+实验:探究小车速度随时间变化的规律
+速度与时间的关系
+位移-时间的关系
+速度与位移的关系
+自由落体运动
+伽利略研究自由落体的实验
+运动图象
+匀变速直线运动规律和推论
+竖直上抛和类竖直上抛运动
+追及相遇问题
+实验:研究匀变速直线运动及改编实验
+力和力的性质
+重力
+弹力
+胡克定律
+实验:探究弹簧弹力与弹簧形变量的关系
+滑动摩擦力
+静摩擦力
+作用力与平衡力
+牛顿第三定律
+力的合成
+力的分解
+平行四边形定则
+实验:验证力的平行四边形定则
+三力平衡
+多力平衡
+整体法与隔离法
+动态平衡
+静力学的受力分析
+静力学临界问题
+伽利略理想实验
+牛顿第一定律
+实验:探究加速度与力、质量的关系
+实验:牛顿第二定律创新型实验
+牛顿第二定律
+力学单位制
+量纲法
+瞬时问题
+连接体问题
+弹簧动力学问题
+动力学临界问题
+动力学图像问题
+两类动力学
+传送带综合问题
+板块综合问题
+超重与失重
+曲线运动的条件
+曲线运动的特点
+小船渡河问题
+相关联问题
+运动的合成与分解
+研究平抛运动
+平抛运动
+类平抛运动
+斜抛运动
+描述圆周运动的物理量
+匀速圆周运动
+变速圆周运动
+向心力
+实验:探究向心力大小的表达式
+向心加速度
+水平类圆周运动
+竖直类圆周运动
+离心、近心现象
+圆周运动临界问题
+绳杆模型
+开普勒三大定律
+行星运动的两种学说
+万有引力定律
+引力常量的测定
+测中心天体质量
+测中心天体密度
+三种宇宙速度
+卫星运行的规律(追击)
+近地卫星、同步卫星
+变轨与能量
+经典时空观和相对论时空观
+牛顿力学的局限性
+万有引力的两大推论
+双星、多星问题
+功
+功率
+机车启动
+一对滑动摩擦力做功
+重力做功
+重力势能
+重力做功与重力势能的变化关系
+弹性势能
+实验:探究弹簧弹性势能表达式
+动能、动能变化量
+动能定理
+实验:探究做功与物体动能变化的关系
+动能与势能的相互转化
+机械能守恒的条件、机械能守恒定律
+机械能守恒定律的应用
+实验:验证机械能守恒定律
+一对相互作用力做功的特点
+变力做功
+动能定理的应用
+功能关系的应用
+实验:力学综合性实验
+电荷、三种起电方式
+电荷守恒定律
+元电荷、比荷
+库伦定律的内容以及计算
+静电力常量
+库仑定律静力学问题
+库仑定律动力学问题
+电场
+电场强度与电场力
+点电荷的电场、匀强电场
+电场线
+电场强度的叠加
+静电平衡
+静电屏蔽
+静电力做功
+电势能
+电势
+电势差
+等势面
+电势差与电场强度的关系
+电容器
+电容
+带电粒子在电场中的运动
+示波管
+电场线、等势面粒子运动轨迹的关系
+利用等势面确定电场
+带电粒子在电场和重力场组成的复合场中的运动
+带电粒子在交变电场中的运动
+电场与力学综合
+电场中的图像问题
+电场中的功能关系
+电源
+电流表达式
+导体的电阻
+影响导体电阻的因素
+实验:描绘小灯泡伏安特性曲线
+游标卡尺与螺旋测微器
+测定金属的电阻率
+串并联电路
+电压表和电流表构造与改装
+内接法与外接法
+滑动变阻器限流接法与分压接法
+欧姆表原理及使用
+多用电表的原理及使用
+探索黑箱内电阻
+用多用表判断电路故障
+实验:半偏法测电表内阻
+实验:测电阻创新型实验
+电功和电功率
+焦耳定律
+电路中的能量转化
+电动势
+闭合电路的欧姆定律
+闭合电路的动态分析
+闭合电路能量分析
+含电容器的闭合电路
+实验:测定电池的电动势和内阻
+能量与可持续发展
+能量守恒定律
+两种U-I图像
+实验:测电源电动势和内阻创新型实验
+磁现象
+电流的磁效应
+磁场
+地磁场
+磁感线
+安培定则
+几种常见的磁场
+安培分子电流假说
+磁感应强度
+匀强磁场
+磁通量
+产生感应电流的条件
+电磁感应现象的应用
+电磁场
+电磁波
+电磁波谱
+电磁波生活中的应用
+热辐射
+黑体辐射
+能量子
+能级
+寻求碰撞中的不变量
+动量变化量
+动量
+冲量
+动量定理
+动量定理的应用
+动量守恒定律
+实验:验证动量守恒定律
+弹性碰撞
+非弹性碰撞
+反冲运动
+动量和能量综合问题
+弹簧振子
+振动图象
+振幅、周期、频率、相位
+简谐运动的表达式
+简谐运动的回复力
+简谐运动的能量
+单摆
+单摆的周期
+实验:探究单摆的运动、用单摆测定重力加速度
+能量、阻尼振动
+受迫振动
+共振
+简谐运动的综合问题
+波的形成和传播
+横波和纵波
+机械波
+波的图象
+波长、频率和波速
+波的反射
+波的折射
+波的衍射
+波的叠加
+波的干涉
+多普勒效应
+机械振动和机械波
+波的图象与振动图象
+折射率
+实验:测定玻璃的折射率
+全反射
+光导纤维及其运用
+光的干涉
+光的双缝干涉和薄膜干涉
+实验:用双缝干涉测量光的波长
+光的衍射
+偏振、偏振现象及其运用
+激光的特点及其运用
+光的颜色及色散定义
+色散的几种情况
+安培力
+左手定则
+磁电式电流表
+洛伦兹力的方向和大小
+电视显像管的工作原理
+带电粒子在有界磁场中的运动
+带电粒子在磁场中运动的临界问题
+带电粒子在磁场中运动的两个基本公式
+带电粒子在磁场中的多解问题
+带电粒子在匀强磁场中的运动
+速度选择器、磁流体发电机
+质谱仪和回旋加速器
+带电粒子在组合场中的运动
+带电粒子在复合场中的运动
+楞次定律
+右手定则
+感应电动势的产生条件
+法拉第电磁感应定律
+导线切割磁感线时的感应电动势
+电磁感应现象中的感生电场
+涡流
+电磁阻尼和电磁驱动
+互感现象
+自感现象
+自感系数
+磁场能量
+电磁感应电路问题
+电磁感应动力学问题
+电磁感应能量以及动量问题
+电磁感应图象问题
+电磁感应单棒模型
+电磁感应双棒模型
+电磁感应的综合问题
+交变电流
+交变电流的产生
+交流电的四个值
+正弦式交变电流的公式和图像
+电感器对交变电流的阻碍作用
+电容器对交变电流的阻碍作用
+理想变压器
+原副线圈电流、电压、功率的关系
+远距离输电
+交变电流与电磁感应的综合
+理想变压器动态变化
+电磁振荡的产生
+电磁振荡中的过程分析
+电磁波
+麦克斯韦电磁场理论
+无线电波的发射和接收
+电磁波谱
+电磁波的传输、应用
+传感器及种类
+传感器的应用
+利用传感器制作简单的自动控制装置
+物质由大量分子组成
+扩散现象
+布朗运动
+分子间的作用力
+分子动理论
+实验:用油膜法估测分子的大小
+随机性和统计规律
+分子运动速率分布图像
+气体压强的微观意义
+分子动能
+分子势能
+物体的内能
+状态参量与平衡态
+热平衡与温度
+温度计与温标
+玻意耳定律
+充气、抽气
+灌气类问题
+气体的等压变化
+气体的等容变化
+理想气体
+理想气体状态方程
+图象问题
+对气体实验定律的微观解释
+水银柱类综合问题
+活塞类综合问题
+晶体和非晶体
+晶体的微观结构
+液体的微观结构
+液体的表面张力
+浸润和不浸润
+毛细现象
+液晶
+饱和汽、饱和汽压
+气体实验定律综合应用
+焦耳实验
+功与内能的改变
+热与内能的改变
+热力学第一定律
+能量守恒定律(热学)
+热力学第二定律
+热力学定律与气体定律的综合
+黑体与黑体辐射
+黑体辐射的实验规律
+能量量子化
+光电效应
+爱因斯坦光电效应方程
+康普顿效应与光子的动量
+光的波粒二象性
+电子
+原子的核式结构模型
+α粒子散射实验
+光谱与氢原子光谱
+玻尔理论的局限性
+氢原子光谱的实验规律
+氢原子的能级公式和跃迁
+玻尔理论对氢光谱的解释
+物质波
+量子力学的应用
+天然放射现象
+射线的本质
+原子核的组成
+原子核的衰变
+半衰期
+核反应
+放射性同位素及其应用
+人工转变
+质子和中子的发现
+衰变反冲轨迹
+辐射与安全
+核力与四种基本相互作用
+结合能
+质量亏损
+爱因斯坦质能方程
+核裂变、裂变反应堆
+核聚变
+新粒子及分类

+ 8 - 0
readme.md

@@ -0,0 +1,8 @@
+模型文件存放路径:
+204服务器上,/home/cv/workspace/tujintao/学科标注模型文件/
+上线前:
+    修改.env文件中的配置路径
+上线:
+    cd auto_label
+    export PYTHONPATH=$pwd:PYTHONPATH
+    python server/server.py

+ 0 - 0
server/__init__.py


+ 93 - 0
server/server.py

@@ -0,0 +1,93 @@
+from fastapi import FastAPI, Request, BackgroundTasks
+import uvicorn
+from fastapi.responses import JSONResponse, Response
+from dotenv import load_dotenv
+load_dotenv()
+from service import labeling
+from config.config import subject_id
+from common.valid_check import valid_params, valid_is_contained, LabelExceptionErrCode
+TIMEOUT_KEEP_ALIVE = 5  # seconds.
+from config.config import log
+app = FastAPI()
+from concurrent.futures import ThreadPoolExecutor
+import requests
+executor = ThreadPoolExecutor(max_workers=1)
+@app.post("/auto_label")
+async def auto_label(request: Request) -> Response:
+    """
+    入参格式:
+        {
+            "subject_id": xx,
+            "topic_list": [
+                {
+                    "topic_id": 23,#题目id
+                    "topic_text": "题干",
+                    "parse": "解析",
+                    "option": []
+                }
+            ],
+            "call_back_url": "回调url"
+        }
+
+    回调响应函数格式:
+        {
+            "topic_list": [
+                {
+                    "topic_id": 234,#题目id
+                    "labels": ["牛顿第二定律","牛顿第一定律"],#考点列表
+                    "knowsledge_state": -1,#考点标注状态,1,成功,-1失败
+                    "difficulty_state":1,#难度标注状态,1成功,-1失败
+                    "difficulty": 2#难度值
+                }
+            ]
+        }
+    """
+    request_dict = await request.json()
+    log.info("request: "+ str(request_dict))
+    result = {"err_code": 0, "msg": "success"}
+
+    #1. 校验参数是否合法
+    if not valid_params(request_dict.get("subject_id", None),
+                        request_dict.get("topic_list", None),
+                        request_dict.get("call_back_url", "")):
+        result = {"err_code": LabelExceptionErrCode.PARAM_NOT_NULL.value, "msg": "入参不能为空"}
+        return result
+    topic_list = request_dict["topic_list"]
+    if len(topic_list) > 10:
+        result = {"err_code": LabelExceptionErrCode.NUM_OVER_LIMIT.value, "msg": "一次标注题目个数不能超过10道题"}
+        return result
+    for topic in topic_list:
+        if not valid_params(topic.get("topic_text", ""),topic.get("parse", None), topic.get("topic_id", None)):
+            result = {"err_code": LabelExceptionErrCode.PARAM_NOT_NULL.value, "msg": "入参不能为空"}
+            return result
+    if not valid_is_contained(request_dict["subject_id"], subject_id):
+        result = {"err_code": LabelExceptionErrCode.PARAM_NOT_NULL.value, "msg": "学科id不合法"}
+        return result
+
+    #2. 启动线程标注
+    def async_chc():
+        nonlocal request_dict
+        result = labeling.auto_label(request_dict)
+        if result["err_code"] == -1:
+            requests.post(request_dict["call_back_url"], json=result)
+        else:
+            #冗余一个难度字段,用于后续支持难度标注
+            for topic in result["topic_list"]:
+                topic["difficulty"] = 2
+                topic["difficulty_state"] = 1
+                result["topic_list"].append(topic)
+            # 将结果post给callback_url
+            requests.post(request_dict["call_back_url"], json=result)
+    executor.submit(async_chc)
+
+    return JSONResponse(result)
+
+
+if __name__ == "__main__":
+    uvicorn.run('server:app',
+                host="0.0.0.0",
+                port=8840,
+                log_level="debug",
+                timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
+                workers=1,
+                )

+ 0 - 0
service/__init__.py


+ 194 - 0
service/labeling.py

@@ -0,0 +1,194 @@
+import time
+
+from langgraph.graph import StateGraph, END
+from typing_extensions import TypedDict
+from llm.build_model import qwen2
+import os
+from langchain_core.output_parsers import StrOutputParser
+from config.config import log
+from common.data_utils import build_params
+physics_knowledge_set = set()
+math_knowledge_set = set()
+with open(os.environ.get("PHYSICS_KNOWLEDGES_FILE_PATH"), 'r', encoding="utf8") as f:
+    for knowledge in f:
+        knowledge = knowledge.strip()
+        physics_knowledge_set.add(knowledge)
+
+with open(os.environ.get("MATH_KNOWLEDGES_FILE_PATH"), 'r', encoding="utf8") as f:
+    for knowledge in f:
+        knowledge = knowledge.strip()
+        math_knowledge_set.add(knowledge)
+chain = qwen2 | StrOutputParser()
+
+class TopicGraphState(TypedDict):
+    """
+    表示topic图的状态
+    Attributes:
+        topic_content: topic content
+        label_value: label value
+        subject_id: 学科id
+    """
+    topic_content: str
+    label_value: str
+    subject_id: int
+
+workflow = StateGraph(TopicGraphState)
+
+#生成标签
+def generate_labels(state):
+    topic_content = state["topic_content"]
+    log.debug("学科id:"+str(state["subject_id"]))
+    label_value = chain.invoke(topic_content, subject_id=state["subject_id"])
+    return {"label_value": label_value, "topic_content": topic_content}
+
+#标签过滤
+def filter_label_func(label_value: str, knowledge_set: set):
+    filter_labels = []
+    labels = list(set(label_value.split(",")))
+    for label in labels:
+        if label in knowledge_set:
+            filter_labels.append(label)
+
+    if len(filter_labels) == 0:
+        return ""
+    else:
+        return ",".join(filter_labels)
+
+#路由
+def route_topic(state):
+    label_value = state["label_value"]
+    if len(label_value) == 0:
+        return END
+    if state["subject_id"] == 12:
+        return "physics_knowledge_check"
+    if state["subject_id"] == 3:
+        return "math_knowledge_check"
+    return END
+
+#物理知识点标签处理
+def physics_knowledge_check(state):
+    label_value = state["label_value"]
+    labels = label_value.split(",")
+    filter_labels = []
+    #1. 关键词匹配,添加知识点
+    if "查理定律" in state["topic_content"]:
+        filter_labels.append("气体的等容变化")
+    if "盖-吕萨克定律" in state["topic_content"] or "盖吕萨克定律" in state["topic_content"]:
+        filter_labels.append("气体的等压变化")
+
+    #2. 过滤知识点
+    error_label = []
+    for label in labels:
+        if (label == "x-t图象" or label == "v-t图象") and ("匀加速" in state["topic_content"] or "匀减速" in state["topic_content"]):
+            filter_labels.append("运动图象")
+            continue
+        if label == "追及相遇问题" and "自由落体" in state["topic_content"]:
+            continue
+        if label == "实验:验证机械能守恒定律" and "机械能" not in state["topic_content"]:
+            continue
+        if label == "气体的等容变化" and ("等容" not in state["topic_content"] or "查理定律" not in state["topic_content"]):
+            continue
+        if label == "实验:测定金属的电阻率":
+            filter_labels.append("测定金属的电阻率")
+            continue
+        if label in physics_knowledge_set:
+            filter_labels.append(label)
+        else:
+            error_label.append(label)
+    if len(filter_labels) == 0:
+        topic_content = state["topic_content"]. \
+            replace(",给出考察的知识点。", ",请给出考察的正确的知识点。输出知识点的个数请限制在2个之内")
+        topic_content += "\n请不要输出以下知识点:\n" + ",".join(error_label)
+        label_value = chain.invoke(topic_content, subject_id=state["subject_id"])
+        label_value = filter_label_func(label_value, physics_knowledge_set)
+        filter_labels = label_value.split(",")
+
+    #3. 如果知识点列表为空,使用规则匹配
+    if len(filter_labels) == 0:
+        if "等温变化" in state["topic_content"]:
+            filter_labels.append("玻意耳定律")
+    label_value = ",".join(list(set(filter_labels)))
+    return {"label_value": label_value, "topic_content": state["topic_content"]}
+
+#数学知识点标签处理
+def math_knowledge_check(state):
+    label_value = state["label_value"]
+    labels = label_value.split(",")
+    filter_labels = []
+    #1. 关键词匹配,添加知识点
+    #2. 过滤知识点
+    error_label = []
+    for label in labels:
+        if label in math_knowledge_set:
+            filter_labels.append(label)
+        else:
+            error_label.append(label)
+    if len(filter_labels) == 0:
+        topic_content = state["topic_content"]. \
+            replace(",给出考察的知识点。", ",请给出考察的正确的知识点。输出知识点的个数请限制在2个之内")
+        topic_content += "\n请不要输出以下知识点:\n" + ",".join(error_label)
+        label_value = chain.invoke(topic_content, subject_id=state["subject_id"])
+        label_value = filter_label_func(label_value, math_knowledge_set)
+        filter_labels = label_value.split(",")
+
+    #3. 如果知识点列表为空,使用规则匹配
+    # if len(filter_labels) == 0:
+    #     if "等温变化" in state["topic_content"]:
+    #         filter_labels.append("玻意耳定律")
+    label_value = ",".join(list(set(filter_labels)))
+    return {"label_value": label_value, "topic_content": state["topic_content"]}
+
+
+#定义节点
+workflow.add_node("generate", generate_labels)
+workflow.add_node("physics_knowledge_check", physics_knowledge_check)
+workflow.add_node("math_knowledge_check", math_knowledge_check)
+workflow.add_conditional_edges(
+    "generate",
+    route_topic
+)
+workflow.set_entry_point("generate")
+
+topic_flow = workflow.compile()
+import requests, asyncio
+# lock = asyncio.Lock()
+# async def auto_label(request_dict: dict) -> dict:
+#     async with lock:
+#         time.sleep(5)
+#         result = {"err_code": 0, "msg": "success", "labels": []}
+#         #清洗文本,组装参数
+#         sentence = build_params(request_dict)
+#         subject_id = request_dict["subject_id"]
+#         try:
+#             messages = topic_flow.invoke({"topic_content": sentence, "subject_id": subject_id})
+#             pred_label = messages["label_value"]
+#             if len(pred_label) != 0:
+#                 result["labels"] = pred_label.split(",")
+#         except Exception as e:
+#             log.error(e)
+#             result = {"err_code": -1, "msg": "处理失败"}
+#         requests.post(request_dict["call_back_url"], json=result)
+#     return result
+def auto_label(request_dict: dict) -> dict:
+    result = {"err_code": 0, "msg": "success"}
+    #清洗文本,组装参数
+    try:
+        result["topic_list"] = []
+        for topic in request_dict["topic_list"]:
+            topic_result = {}
+            sentence = build_params(topic)
+            subject_id = request_dict["subject_id"]
+            messages = topic_flow.invoke({"topic_content": sentence, "subject_id": subject_id})
+            pred_label = messages["label_value"]
+            if len(pred_label) != 0:
+                topic_result["labels"] = pred_label.split(",")
+                topic_result["knowsledge_state"] = 1
+            else:
+                topic_result["labels"] = []
+                topic_result["knowsledge_state"] = -1
+            topic_result["topic_id"] = topic["topic_id"]
+            result["topic_list"].append(topic_result)
+    except Exception as e:
+        log.error(e)
+        result = {"err_code": -1, "msg": "处理失败"}
+    return result

Kaikkia tiedostoja ei voida näyttää, sillä liian monta tiedostoa muuttui tässä diffissä