from collections import namedtuple import torch import torch.nn as nn import torch.nn.init as init from torchvision import models from torchvision.models.vgg import model_urls def init_weights(modules): for m in modules: if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() class vgg16_bn(torch.nn.Module): def __init__(self, pretrained=True, freeze=True): super(vgg16_bn, self).__init__() model_urls['vgg16_bn'] = model_urls['vgg16_bn'].replace('https://', 'http://') vgg_pretrained_features = models.vgg16_bn(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(12): # conv2_2 self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 19): # conv3_3 self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(19, 29): # conv4_3 self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(29, 39): # conv5_3 self.slice4.add_module(str(x), vgg_pretrained_features[x]) # fc6, fc7 without atrous conv self.slice5 = torch.nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6), nn.Conv2d(1024, 1024, kernel_size=1) ) if not pretrained: init_weights(self.slice1.modules()) init_weights(self.slice2.modules()) init_weights(self.slice3.modules()) init_weights(self.slice4.modules()) init_weights(self.slice5.modules()) # no pretrained model for fc6 and fc7 if freeze: for param in self.slice1.parameters(): # only first conv param.requires_grad= False def forward(self, X): h = self.slice1(X) h_relu2_2 = h h = self.slice2(h) h_relu3_2 = h h = self.slice3(h) h_relu4_3 = h h = self.slice4(h) h_relu5_3 = h h = self.slice5(h) h_fc7 = h vgg_outputs = namedtuple("VggOutputs", ['fc7', 'relu5_3', 'relu4_3', 'relu3_2', 'relu2_2']) out = vgg_outputs(h_fc7, h_relu5_3, h_relu4_3, h_relu3_2, h_relu2_2) return out