12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- """
- Copyright (c) 2019-present NAVER Corp.
- MIT License
- """
- # -*- coding: utf-8 -*-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from basenet.vgg16_bn import vgg16_bn, init_weights
- class double_conv(nn.Module):
- def __init__(self, in_ch, mid_ch, out_ch):
- super(double_conv, self).__init__()
- self.conv = nn.Sequential(
- nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),
- nn.BatchNorm2d(mid_ch),
- nn.ReLU(inplace=True),
- nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),
- nn.BatchNorm2d(out_ch),
- nn.ReLU(inplace=True)
- )
- def forward(self, x):
- x = self.conv(x)
- return x
- class CRAFT(nn.Module):
- def __init__(self, pretrained=False, freeze=False):
- super(CRAFT, self).__init__()
- """ Base network """
- self.basenet = vgg16_bn(pretrained, freeze)
- """ U network """
- self.upconv1 = double_conv(1024, 512, 256)
- self.upconv2 = double_conv(512, 256, 128)
- self.upconv3 = double_conv(256, 128, 64)
- self.upconv4 = double_conv(128, 64, 32)
- num_class = 2
- self.conv_cls = nn.Sequential(
- nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
- nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
- nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),
- nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),
- nn.Conv2d(16, num_class, kernel_size=1),
- )
- init_weights(self.upconv1.modules())
- init_weights(self.upconv2.modules())
- init_weights(self.upconv3.modules())
- init_weights(self.upconv4.modules())
- init_weights(self.conv_cls.modules())
-
- def forward(self, x):
- """ Base network """
- sources = self.basenet(x)
- """ U network """
- y = torch.cat([sources[0], sources[1]], dim=1)
- y = self.upconv1(y)
- y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)
- y = torch.cat([y, sources[2]], dim=1)
- y = self.upconv2(y)
- y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)
- y = torch.cat([y, sources[3]], dim=1)
- y = self.upconv3(y)
- y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)
- y = torch.cat([y, sources[4]], dim=1)
- feature = self.upconv4(y)
- y = self.conv_cls(feature)
- return y.permute(0,2,3,1), feature
- if __name__ == '__main__':
- model = CRAFT(pretrained=True).cuda()
- output, _ = model(torch.randn(1, 3, 768, 768).cuda())
- print(output.shape)
|