123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- """
- Copyright (c) 2019-present NAVER Corp.
- MIT License
- """
- # -*- coding: utf-8 -*-
- import numpy as np
- import cv2
- import math
- """ auxilary functions """
- # unwarp corodinates
- def warpCoord(Minv, pt):
- out = np.matmul(Minv, (pt[0], pt[1], 1))
- return np.array([out[0] / out[2], out[1] / out[2]])
- """ end of auxilary functions """
- def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
- # prepare data
- linkmap = linkmap.copy()
- textmap = textmap.copy()
- img_h, img_w = textmap.shape
- """ labeling method """
- ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
- ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
- text_score_comb = np.clip(text_score + link_score, 0, 1)
- nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8),
- connectivity=4)
- det = []
- mapper = []
- for k in range(1, nLabels):
- # size filtering
- size = stats[k, cv2.CC_STAT_AREA]
- if size < 10: continue
- # thresholding
- if np.max(textmap[labels == k]) < text_threshold: continue
- # make segmentation map
- segmap = np.zeros(textmap.shape, dtype=np.uint8)
- segmap[labels == k] = 255
- segmap[np.logical_and(link_score == 1, text_score == 0)] = 0 # remove link area
- x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
- w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
- niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
- sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
- # boundary check
- if sx < 0: sx = 0
- if sy < 0: sy = 0
- if ex >= img_w: ex = img_w
- if ey >= img_h: ey = img_h
- kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1 + niter, 1 + niter))
- segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
- # make box
- np_contours = np.roll(np.array(np.where(segmap != 0)), 1, axis=0).transpose().reshape(-1, 2)
- rectangle = cv2.minAreaRect(np_contours)
- box = cv2.boxPoints(rectangle)
- # align diamond-shape
- w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
- box_ratio = max(w, h) / (min(w, h) + 1e-5)
- if abs(1 - box_ratio) <= 0.1:
- l, r = min(np_contours[:, 0]), max(np_contours[:, 0])
- t, b = min(np_contours[:, 1]), max(np_contours[:, 1])
- box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
- # make clock-wise order
- startidx = box.sum(axis=1).argmin()
- box = np.roll(box, 4 - startidx, 0)
- box = np.array(box)
- det.append(box)
- mapper.append(k)
- return det, labels, mapper
- def getPoly_core(boxes, labels, mapper, linkmap):
- # configs
- num_cp = 5
- max_len_ratio = 0.7
- expand_ratio = 1.45
- max_r = 2.0
- step_r = 0.2
- polys = []
- for k, box in enumerate(boxes):
- # size filter for small instance
- w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1)
- if w < 10 or h < 10:
- polys.append(None);
- continue
- # warp image
- tar = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
- M = cv2.getPerspectiveTransform(box, tar)
- word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST)
- try:
- Minv = np.linalg.inv(M)
- except:
- polys.append(None);
- continue
- # binarization for selected label
- cur_label = mapper[k]
- word_label[word_label != cur_label] = 0
- word_label[word_label > 0] = 1
- """ Polygon generation """
- # find top/bottom contours
- cp = []
- max_len = -1
- for i in range(w):
- region = np.where(word_label[:, i] != 0)[0]
- if len(region) < 2: continue
- cp.append((i, region[0], region[-1]))
- length = region[-1] - region[0] + 1
- if length > max_len: max_len = length
- # pass if max_len is similar to h
- if h * max_len_ratio < max_len:
- polys.append(None);
- continue
- # get pivot points with fixed length
- tot_seg = num_cp * 2 + 1
- seg_w = w / tot_seg # segment width
- pp = [None] * num_cp # init pivot points
- cp_section = [[0, 0]] * tot_seg
- seg_height = [0] * num_cp
- seg_num = 0
- num_sec = 0
- prev_h = -1
- for i in range(0, len(cp)):
- (x, sy, ey) = cp[i]
- if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg:
- # average previous segment
- if num_sec == 0: break
- cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec]
- num_sec = 0
- # reset variables
- seg_num += 1
- prev_h = -1
- # accumulate center points
- cy = (sy + ey) * 0.5
- cur_h = ey - sy + 1
- cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy]
- num_sec += 1
- if seg_num % 2 == 0: continue # No polygon area
- if prev_h < cur_h:
- pp[int((seg_num - 1) / 2)] = (x, cy)
- seg_height[int((seg_num - 1) / 2)] = cur_h
- prev_h = cur_h
- # processing last segment
- if num_sec != 0:
- cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec]
- # pass if num of pivots is not sufficient or segment widh is smaller than character height
- if None in pp or seg_w < np.max(seg_height) * 0.25:
- polys.append(None);
- continue
- # calc median maximum of pivot points
- half_char_h = np.median(seg_height) * expand_ratio / 2
- # calc gradiant and apply to make horizontal pivots
- new_pp = []
- for i, (x, cy) in enumerate(pp):
- dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0]
- dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1]
- if dx == 0: # gradient if zero
- new_pp.append([x, cy - half_char_h, x, cy + half_char_h])
- continue
- rad = - math.atan2(dy, dx)
- c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad)
- new_pp.append([x - s, cy - c, x + s, cy + c])
- # get edge points to cover character heatmaps
- isSppFound, isEppFound = False, False
- grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0])
- grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0])
- for r in np.arange(0.5, max_r, step_r):
- dx = 2 * half_char_h * r
- if not isSppFound:
- line_img = np.zeros(word_label.shape, dtype=np.uint8)
- dy = grad_s * dx
- p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy])
- cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
- if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
- spp = p
- isSppFound = True
- if not isEppFound:
- line_img = np.zeros(word_label.shape, dtype=np.uint8)
- dy = grad_e * dx
- p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy])
- cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
- if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
- epp = p
- isEppFound = True
- if isSppFound and isEppFound:
- break
- # pass if boundary of polygon is not found
- if not (isSppFound and isEppFound):
- polys.append(None);
- continue
- # make final polygon
- poly = []
- poly.append(warpCoord(Minv, (spp[0], spp[1])))
- for p in new_pp:
- poly.append(warpCoord(Minv, (p[0], p[1])))
- poly.append(warpCoord(Minv, (epp[0], epp[1])))
- poly.append(warpCoord(Minv, (epp[2], epp[3])))
- for p in reversed(new_pp):
- poly.append(warpCoord(Minv, (p[2], p[3])))
- poly.append(warpCoord(Minv, (spp[2], spp[3])))
- # add to final result
- polys.append(np.array(poly))
- return polys
- def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False):
- boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)
- if poly:
- polys = getPoly_core(boxes, labels, mapper, linkmap)
- else:
- polys = [None] * len(boxes)
- return boxes, polys
- def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net=2):
- if len(polys) > 0:
- polys = np.array(polys)
- for k in range(len(polys)):
- if polys[k] is not None:
- polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
- return polys
|