12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- """
- Copyright (c) 2019-present NAVER Corp.
- MIT License
- """
- # -*- coding: utf-8 -*-
- import numpy as np
- from skimage import io
- import cv2
- def loadImage(img_file):
- img = io.imread(img_file) # RGB order
- if img.shape[0] == 2: img = img[0]
- if len(img.shape) == 2 : img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
- if img.shape[2] == 4: img = img[:,:,:3]
- img = np.array(img)
- return img
- def normalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
- # should be RGB order
- img = in_img.copy().astype(np.float32)
- img -= np.array([mean[0] * 255.0, mean[1] * 255.0, mean[2] * 255.0], dtype=np.float32)
- img /= np.array([variance[0] * 255.0, variance[1] * 255.0, variance[2] * 255.0], dtype=np.float32)
- return img
- def denormalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
- # should be RGB order
- img = in_img.copy()
- img *= variance
- img += mean
- img *= 255.0
- img = np.clip(img, 0, 255).astype(np.uint8)
- return img
- def resize_aspect_ratio(img, square_size, interpolation, mag_ratio=1):
- height, width, channel = img.shape
- # magnify image size
- target_size = mag_ratio * max(height, width)
- # set original image size
- if target_size > square_size:
- target_size = square_size
-
- ratio = target_size / max(height, width)
- target_h, target_w = int(height * ratio), int(width * ratio)
- proc = cv2.resize(img, (target_w, target_h), interpolation = interpolation)
- # make canvas and paste image
- target_h32, target_w32 = target_h, target_w
- if target_h % 32 != 0:
- target_h32 = target_h + (32 - target_h % 32)
- if target_w % 32 != 0:
- target_w32 = target_w + (32 - target_w % 32)
- resized = np.zeros((target_h32, target_w32, channel), dtype=np.float32)
- resized[0:target_h, 0:target_w, :] = proc
- target_h, target_w = target_h32, target_w32
- size_heatmap = (int(target_w/2), int(target_h/2))
- return resized, ratio, size_heatmap
- def cvt2HeatmapImg(img):
- img = (np.clip(img, 0, 1) * 255).astype(np.uint8)
- img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
- return img
|