1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- """
- Copyright (c) 2019-present NAVER Corp.
- MIT License
- """
- # -*- coding: utf-8 -*-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.autograd import Variable
- from basenet.vgg16_bn import init_weights
- class RefineNet(nn.Module):
- def __init__(self):
- super(RefineNet, self).__init__()
- self.last_conv = nn.Sequential(
- nn.Conv2d(34, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True),
- nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True),
- nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
- )
- self.aspp1 = nn.Sequential(
- nn.Conv2d(64, 128, kernel_size=3, dilation=6, padding=6), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 1, kernel_size=1)
- )
- self.aspp2 = nn.Sequential(
- nn.Conv2d(64, 128, kernel_size=3, dilation=12, padding=12), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 1, kernel_size=1)
- )
- self.aspp3 = nn.Sequential(
- nn.Conv2d(64, 128, kernel_size=3, dilation=18, padding=18), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 1, kernel_size=1)
- )
- self.aspp4 = nn.Sequential(
- nn.Conv2d(64, 128, kernel_size=3, dilation=24, padding=24), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 128, kernel_size=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True),
- nn.Conv2d(128, 1, kernel_size=1)
- )
- init_weights(self.last_conv.modules())
- init_weights(self.aspp1.modules())
- init_weights(self.aspp2.modules())
- init_weights(self.aspp3.modules())
- init_weights(self.aspp4.modules())
- def forward(self, y, upconv4):
- refine = torch.cat([y.permute(0,3,1,2), upconv4], dim=1)
- refine = self.last_conv(refine)
- aspp1 = self.aspp1(refine)
- aspp2 = self.aspp2(refine)
- aspp3 = self.aspp3(refine)
- aspp4 = self.aspp4(refine)
- #out = torch.add([aspp1, aspp2, aspp3, aspp4], dim=1)
- out = aspp1 + aspp2 + aspp3 + aspp4
- return out.permute(0, 2, 3, 1) # , refine.permute(0,2,3,1)
|