tujintao 1 yıl önce
ebeveyn
işleme
00202f830e
1 değiştirilmiş dosya ile 131 ekleme ve 0 silme
  1. 131 0
      comprehensive_score.py

+ 131 - 0
comprehensive_score.py

@@ -0,0 +1,131 @@
+import json
+from fuzzywuzzy import fuzz
+
+
+class Comprehensive_Score():
+    def __init__(self):
+        with open("model_data/keyword_mapping.json", 'r', encoding="utf8") as f:
+            keyword_mapping = json.load(f)
+        self.scene2id = keyword_mapping["scene2id"]
+        self.knowledge2id = keyword_mapping["knowledge2id"]
+        self.quantity2id = keyword_mapping["quantity2id"]
+        self.init_id2max_id = keyword_mapping["init_id2max_id"]
+
+    def __call__(self, query, refer, scale):
+        score_dict = dict()
+        quesType = self.compute_quesType(query["quesType"], refer["quesType"]["quesType"])
+        knowledge = self.compute_knowledge(query["knowledge"], refer["knowledge"])
+        physical_scene = self.compute_physical_scene(query["physical_scene"], refer["physical_scene"])
+        solving_type = self.compute_solving_type(query["solving_type"], refer["solving_type"])
+        difficulty = self.compute_difficulty(query["difficulty"], refer["difficulty"])
+        physical_quantity = self.compute_physical_quantity(query["physical_quantity"], refer["physical_quantity"])
+        # image_semantics = self.compute_image_semantics(query["image_semantics"], refer["image_semantics"])
+
+        sum_score = quesType * scale["quesType"] + knowledge * scale["knowledge"] + physical_scene * scale["physical_scene"] + \
+                    solving_type * scale["solving_type"] + difficulty * scale["difficulty"] + \
+                    physical_quantity * scale["physical_quantity"]# + image_semantics * scale["image_semantics"]
+        sum_score = int(sum_score * 100) / 100
+        sum_score = min(sum_score, 1.0)
+
+        score_dict["quesType"] = quesType
+        score_dict["knowledge"] = knowledge
+        score_dict["physical_scene"] = physical_scene
+        score_dict["solving_type"] = solving_type
+        score_dict["difficulty"] = difficulty
+        score_dict["physical_quantity"] = physical_quantity
+        # score_dict["image_semantics"] = image_semantics
+
+        return sum_score, score_dict
+
+    # 知识点/物理场景/物理量相互关联得分计算
+    def compute_relate_score(self, query_list, refer_list, keyword2id, mode=0):
+        query_set, refer_set = set(query_list), set(refer_list)
+        if query_set == refer_set:
+            return 1.0
+        if len(query_set) > len(refer_set):
+            query_set, refer_set = refer_set, query_set
+        accumulate_score = 0
+        max_length = len(refer_set)
+        # 双层循环计算知识点之间关联得分
+        for query in query_set:
+            query_score = 0
+            query_id = keyword2id.get(query, 0)
+            for refer in refer_set:
+                refer_id = keyword2id.get(refer, 0)
+                if query_id == refer_id:
+                    query_score += 1
+                    continue
+                # 知识点
+                if mode == 0:
+                    if abs(query_id - refer_id) < 10: query_score += 0.3
+                    elif abs(query_id - refer_id) < 100: query_score += 0.2
+                    else: continue
+                elif mode == 1:
+                    if abs(query_id - refer_id) < 10: query_score += 0.5
+                    else: continue
+                elif mode == 3:
+                    if abs(query_id - refer_id) < 100: query_score += 0.2
+                    else: continue
+                fuzz_score = fuzz.ratio(query, refer)
+                if fuzz_score >= 0.4:
+                    query_score += 0.1
+            # refer长度为1特殊处理
+            if max_length == 1:
+                return query_score
+            # 限定关联得分上限
+            max_score = 1 / max_length + 1 if query in refer_set else (max_length - 1) / max_length
+            if query_score > max_score: 
+                accumulate_score += max_score
+            else: 
+                accumulate_score += query_score
+
+        return min(accumulate_score / max_length, 0.85)
+
+    # 题型相似度评分
+    def compute_quesType(self, query, refer):
+        score = 0.0
+        if query == refer:
+            score = 1.0
+        return score
+
+    # 知识点相似度评分
+    def compute_knowledge(self, query_list, refer_list):
+        score = self.compute_relate_score(query_list, refer_list, self.knowledge2id, mode=0)
+        return int(score * 100) / 100
+
+    # 物理场景相似度评分
+    def compute_physical_scene(self, query_list, refer_list):
+        score = self.compute_relate_score(query_list, refer_list, self.scene2id, mode=1)
+        return int(score * 100) / 100
+
+    # 试题求解类型相似度评分
+    def compute_solving_type(self, query_list, refer_list):
+        query_set, refer_set = set(query_list), set(refer_list)
+        if len(query_set) > len(refer_set):
+            query_set, refer_set = refer_set, query_set
+        same_count = sum([1 for ele in query_set if ele in refer_set])
+        score = same_count / len(refer_set)
+        return int(score * 100) / 100
+        
+    # 难度相似度评分
+    def compute_difficulty(self, query, refer):
+        score = 1 - abs(float(query) - float(refer))
+        return int(score * 100) / 100
+
+    # 物理量相似度评分
+    def compute_physical_quantity(self, query_list, refer_list):
+        score = self.compute_relate_score(query_list, refer_list, self.quantity2id, mode=2)
+        return int(score * 100) / 100
+
+    # 图片语义相似度评分
+    def compute_image_semantics(self, query_list, refer_list):
+        query_set, refer_set = set(query_list), set(refer_list)
+        if len(query_set) == 0 and len(refer_set) == 0:
+            return 1
+        elif len(query_set) == 0 or len(refer_set) == 0:
+            return 0
+        elif len(query_set) > len(refer_set):
+            query_set, refer_set = refer_set, query_set
+        same_count = sum([1 for ele in query_set if ele in refer_set])
+        score = same_count / len(refer_set)
+        return int(score * 100) / 100