[ { "id": 283508, "type_id": 1, "type_name": "单选题", "answer_time": 0, "answer_score": 0, "experience_degree": 0.61, "create_time": 1527667464, "update_time": 1532590233, "subject_id": 6, "subject_name": "高三专用", "parse_video": "", "parse_video_qrcode": "", "parse_content": "
设,则,故在上单调递增,又是定义在上的奇函数,所以,即.又,,,所以.
", "teacher_tips": "", "kps": [ { "kp_id": 241, "kp_name": "导数", "section_id": 102, "section_name": "导数与定积分
", "chapter_id": 101, "chapter_name": "导数与定积分
" }, { "kp_id": 238, "kp_name": "基本初等函数", "section_id": 100, "section_name": "函数
", "chapter_id": 99, "chapter_name": "函数
" } ], "specials": [ { "method_id": 394, "method_name": "指、对数运算及指、对数方程和不等式", "special_id": 197, "special_name": "基本初等函数
", "kp_id": 238, "kp_name": "基本初等函数", "section_id": 100, "section_name": "函数
", "chapter_id": 99, "chapter_name": "函数
" }, { "method_id": 410, "method_name": "利用导数研究函数的单调性", "special_id": 200, "special_name": "导数
", "kp_id": 241, "kp_name": "导数", "section_id": 102, "section_name": "导数与定积分
", "chapter_id": 101, "chapter_name": "导数与定积分
" }, { "method_id": 414, "method_name": "导数的综合应用", "special_id": 200, "special_name": "导数
", "kp_id": 241, "kp_name": "导数", "section_id": 102, "section_name": "导数与定积分
", "chapter_id": 101, "chapter_name": "导数与定积分
" } ], "ablies": [], "difficulty": 3, "source": "云题库", "file_abbreviation": "", "star_level": 1, "solution_number": 1, "is_stop": 0, "teaching_quality": 0, "title": "已知函数是定义在上的奇函数,且恒成立.若,,,则的大小关系是( )
", "items": [ { "type_id": 1, "type_name": "单选题", "list_type": 1, "title": "", "options": [ { "option_id": 433426, "option_content": "", "option_correct": 1, "option_score": null }, { "option_id": 433427, "option_content": "", "option_correct": 0, "option_score": null }, { "option_id": 433428, "option_content": "", "option_correct": 0, "option_score": null }, { "option_id": 433429, "option_content": "", "option_correct": 0, "option_score": null } ] } ], "difficulty_degree": 0.61, "uses": { "total": 0, "school": 0, "oneself": 0 } } ]