123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- [
- {
- "id": 283508,
- "type_id": 1,
- "type_name": "单选题",
- "answer_time": 0,
- "answer_score": 0,
- "experience_degree": 0.61,
- "create_time": 1527667464,
- "update_time": 1532590233,
- "subject_id": 6,
- "subject_name": "高三专用",
- "parse_video": "",
- "parse_video_qrcode": "",
- "parse_content": "<p>设<img width=\"88\" height=\"36\" src=\"http://mtstatic.dev.xueping.com/dpi600/35/35a20f2a660886f2d7526a5d068abb05.gif?g(x)%20=%20\\frac{{f(x)}}{{{e^x}}}\" class=\"gsImgLatex mathType\"/>,则<img width=\"323\" height=\"43\" src=\"http://mtstatic.dev.xueping.com/dpi600/2d/2d319cf9dfefbc5da48a1f3b7ab1c461.gif?g%27(x)%20=%20\\frac{{[f%27(x)%20-%20f(x)]{e^x}}}{{{{({e^x})}^2}}}%20=%20\\frac{{f%27(x)%20-%20f(x)}}{{{e^x}}}%20%3E%200\" class=\"gsImgLatex mathType\"/>,故<img width=\"29\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/e8/e84fec1e074026d6fa8e3155482c35c3.gif?g(x)\" class=\"gsImgLatex mathType\"/>在<img width=\"12\" height=\"12\" src=\"http://mtstatic.dev.xueping.com/dpi600/e1/e1e1d3d40573127e9ee0480caf1283d6.gif?R\" class=\"gsImgLatex mathType\" style=\"white-space: normal;\"/>上单调递增,又<img width=\"61\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/7c/7c1c9491ba7c6e8d6d2cfa82e39b22ca.gif?y%20=%20f(x)\" class=\"gsImgLatex mathType\" style=\"white-space: normal;\"/>是定义在<img width=\"12\" height=\"12\" src=\"http://mtstatic.dev.xueping.com/dpi600/e1/e1e1d3d40573127e9ee0480caf1283d6.gif?R\" class=\"gsImgLatex mathType\" style=\"white-space: normal;\"/>上的奇函数,所以<img width=\"108\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/2b/2b3b06c453f013e43ebfbce093af492c.gif?f(1)%20=%20%20-%20f(%20-%201)\" class=\"gsImgLatex mathType\"/>,即<img width=\"218\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/e5/e59925476f870846ef43f18bd447f7a1.gif?c%20=%20%20-%20ef(1)%20=%20ef(%20-%201)%20=%20g(%20-%201)\" class=\"gsImgLatex mathType\"/>.又<img width=\"75\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/cb/cb9487c502fdc715c78233012505e07c.gif?a%20=%20g(\\ln%203)\" class=\"gsImgLatex mathType\"/>,<img width=\"74\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/46/46db77863875eed2fa0c4dd07794977d.gif?b%20=%20g(\\ln%202)\" class=\"gsImgLatex mathType\"/>,<img width=\"114\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/c0/c06a75d739aecd12841377696f24baed.gif?\\ln%203%20%3E%20\\ln%202%20%3E%20%20-%201\" class=\"gsImgLatex mathType\"/>,所以<img width=\"67\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/a4/a4a46d8c6c35bcf2023ea5c822278375.gif?a%20%3E%20b%20%3E%20c\" class=\"gsImgLatex mathType\" style=\"white-space: normal;\"/>.</p>",
- "teacher_tips": "",
- "kps": [
- {
- "kp_id": 241,
- "kp_name": "导数",
- "section_id": 102,
- "section_name": "<p>导数与定积分</p>",
- "chapter_id": 101,
- "chapter_name": "<p>导数与定积分</p>"
- },
- {
- "kp_id": 238,
- "kp_name": "基本初等函数",
- "section_id": 100,
- "section_name": "<p>函数</p>",
- "chapter_id": 99,
- "chapter_name": "<p>函数</p>"
- }
- ],
- "specials": [
- {
- "method_id": 394,
- "method_name": "指、对数运算及指、对数方程和不等式",
- "special_id": 197,
- "special_name": "<p>基本初等函数</p>",
- "kp_id": 238,
- "kp_name": "基本初等函数",
- "section_id": 100,
- "section_name": "<p>函数</p>",
- "chapter_id": 99,
- "chapter_name": "<p>函数</p>"
- },
- {
- "method_id": 410,
- "method_name": "利用导数研究函数的单调性",
- "special_id": 200,
- "special_name": "<p>导数</p>",
- "kp_id": 241,
- "kp_name": "导数",
- "section_id": 102,
- "section_name": "<p>导数与定积分</p>",
- "chapter_id": 101,
- "chapter_name": "<p>导数与定积分</p>"
- },
- {
- "method_id": 414,
- "method_name": "导数的综合应用",
- "special_id": 200,
- "special_name": "<p>导数</p>",
- "kp_id": 241,
- "kp_name": "导数",
- "section_id": 102,
- "section_name": "<p>导数与定积分</p>",
- "chapter_id": 101,
- "chapter_name": "<p>导数与定积分</p>"
- }
- ],
- "ablies": [],
- "difficulty": 3,
- "source": "云题库",
- "file_abbreviation": "",
- "star_level": 1,
- "solution_number": 1,
- "is_stop": 0,
- "teaching_quality": 0,
- "title": "<p>已知函数<img width=\"61\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/7c/7c1c9491ba7c6e8d6d2cfa82e39b22ca.gif?y%20=%20f(x)\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>是定义在<img width=\"12\" height=\"12\" src=\"http://mtstatic.dev.xueping.com/dpi600/e1/e1e1d3d40573127e9ee0480caf1283d6.gif?R\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>上的奇函数,且<img width=\"119\" height=\"18\" src=\"http://mtstatic.dev.xueping.com/dpi600/3d/3dd1daa4be28735e78520e488c7851ab.gif?f%27(x)%20-%20f(x)%20%3E%200\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>恒成立.若<img width=\"80\" height=\"36\" src=\"http://mtstatic.dev.xueping.com/dpi600/4e/4e88533f0ed1ebfabbcface99679d66c.gif?a%20=%20\\frac{{f(\\ln%203)}}{3}\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>,<img width=\"79\" height=\"36\" src=\"http://mtstatic.dev.xueping.com/dpi600/ba/ba8007c6ec1ba6192f3bca9f7bf6483c.gif?b%20=%20\\frac{{f(\\ln%202)}}{2}\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>,<img width=\"79\" height=\"17\" src=\"http://mtstatic.dev.xueping.com/dpi600/72/72d7ec84f21adf9ff44d10b73e37236a.gif?c%20=%20%20-%20ef(1)\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>,则<img width=\"38\" height=\"15\" src=\"http://mtstatic.dev.xueping.com/dpi600/a4/a44c56c8177e32d3613988f4dba7962e.gif?a,b,c\" class=\"gsImgLatex mathType\" style=\"vertical-align: middle;\"/>的大小关系是( )</p>",
- "items": [
- {
- "type_id": 1,
- "type_name": "单选题",
- "list_type": 1,
- "title": "",
- "options": [
- {
- "option_id": 433426,
- "option_content": "<p><img width=\"67\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/a4/a4a46d8c6c35bcf2023ea5c822278375.gif?a%20%3E%20b%20%3E%20c\" class=\"gsImgLatex mathType\"/></p>",
- "option_correct": 1,
- "option_score": null
- },
- {
- "option_id": 433427,
- "option_content": "<p><img width=\"67\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/e5/e5911277e0608384df8c50ddbd5bb7ba.gif?c%20%3E%20a%20%3E%20b\" class=\"gsImgLatex mathType\"/></p>",
- "option_correct": 0,
- "option_score": null
- },
- {
- "option_id": 433428,
- "option_content": "<p><img width=\"67\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/c5/c5acba8e3c95ddbd5895acb3bf8e3c04.gif?c%20%3E%20b%20%3E%20a\" class=\"gsImgLatex mathType\"/></p>",
- "option_correct": 0,
- "option_score": null
- },
- {
- "option_id": 433429,
- "option_content": "<p><img width=\"67\" height=\"13\" src=\"http://mtstatic.dev.xueping.com/dpi600/90/90029288dafe9e2b1a986e4b9bb333af.gif?b%20%3E%20c%20%3E%20a\" class=\"gsImgLatex mathType\"/></p>",
- "option_correct": 0,
- "option_score": null
- }
- ]
- }
- ],
- "difficulty_degree": 0.61,
- "uses": {
- "total": 0,
- "school": 0,
- "oneself": 0
- }
- }
- ]
|